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Introduction 
The COVID-19 pandemic underscored the critical need for rapid, scalable, 

and effective vaccine production technologies. The unprecedented global 
effort to develop vaccines for SARS-CoV-2 led to significant advancements in 
viral antigen production, highlighting the capabilities of both prokaryote-based 
(bacterial) and eukaryote-based (cellular) expression systems. These systems 
are central to the production of viral antigens, which are crucial components 
of vaccines designed to induce an immune response. As the world moves 
beyond the pandemic, the demand for vaccines against emerging infectious 
diseases remains high, necessitating further improvements in the efficiency 
and versatility of these antigen production platforms. This article explores 
the current state of developments in post-pandemic viral antigen production, 
focusing on the advantages and challenges of using prokaryotic and eukaryotic 
expression systems [1,2].

Description
Eukaryotic systems can perform complex post-translational modifications, 

such as glycosylation, phosphorylation, and correct protein folding, making 
them ideal for producing viral antigens that require these modifications for 
functionality. For example, the spike protein of SARS-CoV-2, which needs 
proper glycosylation to maintain its immunogenicity, is often produced 
in mammalian cells. Eukaryotic expression systems generally produce 
higher-quality proteins with the correct structure and functionality, which is 
essential for creating vaccines that effectively stimulate an immune response. 
Eukaryotic systems can be scaled for large-scale production. Furthermore, 
they can be engineered to produce a wide variety of proteins, including 
those that require complex folding or assembly, such as viral vectors used 
in gene therapy. Challenges Eukaryotic expression systems are typically 
more expensive and complex to maintain compared to prokaryotic systems. 
The growth of mammalian cells requires specialized culture media, controlled 
environments, and more time for the cells to grow and produce proteins. While 
eukaryotic systems can produce higher-quality proteins, they often yield lower 
quantities of recombinant protein compared to bacterial systems. This makes 
the production process more time- and resource-intensive. Mammalian cell 
cultures are susceptible to contamination from viruses, mycoplasma, or other 
microorganisms. Maintaining aseptic conditions is crucial for the successful 
production of viral antigens in these systems. The use of eukaryotic systems 
in vaccine production often requires extensive regulatory oversight, particularly 
when mammalian cell cultures are used. This can prolong the time to market 
and increase the cost of vaccine production [3-5].

Conclusion
Recent technological advancements have enhanced the capabilities 

of eukaryotic expression systems, particularly in the context of viral antigen 
production. Cell-free systems, which use purified cellular machinery to 
synthesize proteins outside living cells, have been developed as a flexible 
alternative for rapid antigen production. These systems bypass the need for 
cell cultures entirely, offering faster protein production and reducing some of 
the complexities associated with traditional eukaryotic systems. Insect cell 
expression systems, particularly using baculovirus vectors in Sf9 or Sf21 
cells, have emerged as a viable alternative to mammalian cell systems. These 
systems can express large viral proteins efficiently and are often used in 
the production of viral vaccines, such as those for influenza and Zika virus. 
Advances in Chinese hamster ovary cell technology have significantly improved 
their efficiency, both in terms of yield and the quality of produced proteins. New 
CHO cell lines have been engineered to produce higher yields of recombinant 
proteins while maintaining correct post-translational modifications, which is 
critical for the production of complex viral antigens.
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