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Introduction
The detection of defects in industrial products is a crucial task in 

quality control and manufacturing processes. Among various components 
produced in industries, rubber rings are widely used in many applications, 
including automotive, aerospace, and machinery, where they function as 
seals and gaskets. Given their importance, ensuring that these rubber rings 
are defect-free is essential for maintaining product reliability and safety. 
However, manually inspecting rubber rings for defects is a labor-intensive 
and error-prone process. With the rapid advancement of machine learning, 
particularly neural networks, there is significant potential to automate this 
task. A key challenge, however, lies in designing neural network models that 
are not only accurate but also efficient in terms of computational resources 
and processing time. This is particularly important in industrial settings, 
where real-time performance and resource constraints are often critical 
factors. The optimization of lightweight neural networks for rubber ring defect 
detection addresses the need for a model that can perform high-accuracy 
defect detection while minimizing the computational burden. Traditional 
deep learning models, such as convolutional neural networks (CNNs), have 
proven effective for image-based defect detection. However, these models 
typically require large amounts of data, substantial computational resources, 
and significant memory. This makes them less suitable for deployment in 
resource-constrained environments such as embedded systems or industrial 
machines that may not have access to high-performance hardware. Therefore, 
optimizing neural networks to reduce their size and complexity without 
sacrificing accuracy is a critical research direction in the field of automated 
defect detection.

Description
To effectively optimize neural networks for rubber ring defect detection, 

several strategies can be employed. The first step in the process involves 
choosing the appropriate architecture for the neural network. Convolutional 
neural networks are well-suited for image-based tasks, as they are capable 
of capturing spatial hierarchies and local features in images. However, these 
networks can become computationally expensive as they increase in depth 
and complexity. One approach to address this issue is to use lightweight 
CNN architectures designed to achieve a balance between performance and 
computational efficiency. Examples of such architectures include MobileNet, 
SqueezeNet, and ShuffleNet, all of which are designed with the goal of 
reducing the number of parameters and computations required for inference 
while maintaining competitive accuracy. MobileNet, for instance, utilizes 
depthwise separable convolutions instead of the standard convolutions found 
in traditional CNNs. This reduces the number of parameters by a factor of 
about 8, which directly reduces the computational cost. SqueezeNet, on 

the other hand, uses fire modules, which consist of a squeeze layer that 
reduces the dimensionality of the input and an expand layer that increases 
the dimensionality. This helps to reduce the model size while preserving the 
model’s ability to capture important features from the input image. Similarly, 
ShuffleNet leverages group convolutions and channel shuffling to reduce the 
computational cost of convolutional operations. These architectures provide 
an excellent starting point for optimizing neural networks for rubber ring defect 
detection, as they are specifically designed to work efficiently in mobile and 
embedded environments [1].

In addition to selecting a lightweight architecture, model pruning is another 
effective optimization technique. Pruning involves removing unnecessary 
weights or neurons from the neural network, effectively reducing the model's 
size and complexity. This process can be performed in several ways, such as 
by removing neurons with small weights or using more advanced methods like 
dynamic pruning, where the pruning decision is made during training. Pruning 
can significantly reduce the number of operations required during inference, 
making the network more efficient without significantly compromising its 
performance. When applied to the detection of rubber ring defects, pruning 
can help improve the model’s ability to run on embedded systems that require 
fast and efficient processing. Another important optimization technique 
for lightweight neural networks is quantization. Quantization reduces the 
precision of the weights and activations of the network, allowing the model 
to use fewer bits to represent these values. This reduces the memory 
requirements and speeds up the inference process. For example, instead of 
using 32-bit floating-point numbers to represent weights, a network can use 
8-bit integers. Quantization can be applied to both the weights and activations 
of the network, leading to further reductions in model size and computational 
load. This technique is particularly useful for deploying neural networks on 
devices with limited memory and processing power, such as microcontrollers 
or mobile phones. In the case of rubber ring defect detection, the optimized 
and quantized model can run on embedded devices that are integrated into 
production lines, enabling real-time defect detection with minimal latency [2].

Another critical aspect of neural network optimization is the efficient use of 
data. While large datasets can improve the accuracy of defect detection models, 
obtaining a large labeled dataset for rubber ring defects can be challenging 
and time-consuming. Data augmentation techniques can be employed to 
artificially expand the training dataset, thus improving the model’s robustness 
and generalization capabilities. Common data augmentation techniques for 
image-based tasks include random rotations, flips, translations, and color 
adjustments. These techniques can simulate different perspectives, lighting 
conditions, and wear-and-tear patterns, which are common in real-world 
rubber ring defects. By augmenting the data in this way, the neural network 
can become more resilient to variations in the input images and improve its 
ability to detect defects under different conditions. Transfer learning is another 
technique that can be utilized to optimize neural networks for rubber ring 
defect detection. Transfer learning involves using a pre-trained model, often 
trained on a large dataset, as a starting point for training the target model on 
a smaller, domain-specific dataset. This approach helps to reduce the amount 
of labeled data required for training and speeds up the training process. In 
the context of rubber ring defect detection, a pre-trained CNN model, such as 
one trained on a large image classification dataset like ImageNet, can be fine-
tuned on a smaller dataset of rubber ring images. By leveraging the knowledge 
learned from the large dataset, the model can generalize better to the specific 
task of defect detection, even with a limited amount of labeled data [3].

The performance of the optimized lightweight neural network for rubber ring 
defect detection can be evaluated using various metrics, including accuracy, 
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precision, recall, and F1-score. Accuracy measures the overall percentage 
of correct predictions, while precision and recall focus on the performance 
with respect to the positive class (i.e., defect detection). Precision represents 
the proportion of true positive predictions out of all positive predictions, and 
recall measures the proportion of true positive predictions out of all actual 
positive instances. The F1-score is the harmonic mean of precision and recall, 
providing a balanced measure of the model’s performance. These metrics are 
essential in evaluating the effectiveness of the model, as detecting defects in 
rubber rings requires a high level of precision and recall to avoid both false 
positives (misidentifying a defect when there is none) and false negatives 
(failing to identify a defect when one is present). Real-time defect detection is 
crucial in industrial applications, as defects in rubber rings can lead to product 
failures, safety issues, and costly downtime in production lines. Therefore, 
the optimized neural network should be capable of making predictions in real-
time, processing images quickly enough to allow for immediate feedback and 
corrective actions. The lightweight architecture, model pruning, quantization, 
and efficient data augmentation techniques all contribute to reducing the 
inference time and making real-time defect detection feasible. By optimizing 
the model for efficiency, manufacturers can integrate defect detection systems 
into their production lines without requiring expensive hardware or causing 
delays in the production process [4,5].

Conclusion
Optimization of lightweight neural networks for rubber ring defect 

detection provides a powerful solution to the challenges faced in automated 
quality control. By employing techniques such as architecture selection, 
pruning, quantization, data augmentation, and transfer learning, it is possible 
to create an efficient model that can accurately detect defects in rubber rings 
while minimizing the computational resources required. These optimized 
models can be deployed in real-time on embedded systems, making them 
suitable for industrial environments where speed and efficiency are critical. 
As the manufacturing industry continues to embrace automation and smart 
technologies, the role of optimized neural networks in defect detection will 
only grow, driving improvements in product quality and operational efficiency.
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