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Introduction
Numerically solving nonlinear PDE has been on the center stage 

for computational sciences, especially in computational fluid dynamics 
(CFD), a mature interdisciplinary area with many applications. The key 
component of CFD is obtaining reliable and accurate numerical so-
lutions to governing equations such as Burgers’ equations, convection 
diffusion equations, and Navier-Stokes equations under a variety of 
boundary and initial conditions in different dimensions. Convection 
diffusion equation and Burgers’ equation have been widely used to 
test numerical algorithms as they are simple nonlinear PDE describing 
convection and diffusion of a fluid, gas dynamics, shock waves, acoustic 
waves, and traffic flows etc. Handling nonlinear terms is central to 
solving convection diffusion equations and Burgers’ equations.

Previous studies on convection diffusion and Burgers’ equations 
are mainly analytical and numerical. Courant et al. [1] proposed 
the method of characteristics to solve Burgers’ equation. But it has 
a limitation and would not work for the inviscid Burgers’ equation 
because the characteristics may intersect at certain time and may result 
in discontinuities in solution. Hopf et al. [2] introduced a nonlinear 
transformation to convert an original PDE into a linear heat equation 
which can be solved with less effort. Zhu et al. [3] reported a discrete 
Adomain decomposition method, which derived a fully implicit finite 
difference scheme for Burgers’ equation, and nonlinear terms was 
defined by the infinite series of Adomian’s polynomials. Srivastava et 
al. [4,5] used finite difference method to discretize spatial derivatives 
and adopted Newton’s root-finding method [6,7] to solve a system of 
nonlinear equations without linearizing Burgers’ equation. Although 
this method has the advantage of solving Burgers’ equation implicitly, 
generating Jacobian matrix of the system is computational expensive.

Nonlinear terms could be numerically solved either with a 
linearization or without a linearization such as using conservative 
forms. Linearization could relieve the constraint on the size of time 
steps due to stability condition because a linearized PDE could be 
solve implicitly with much larger time step than the time step of an 
explicit method. For very large systems of nonlinear PDE, linearization 
is especially useful in decoupling systems of PDE and making them 
possible to be solved individually and sequentially. For nonlinear PDE 

in multiple dimensions, linearization also facilitates decoupling and 
makes it possible to solve one component ahead of time. On the other 
hand, a relatively recent and successful approach is to cast a nonlinear 
term into a conservative form and use numerical fluxes to solve 
conservation laws [8-13]. This approach is very effective for hyperbolic 
equation where convection is dominant and information propagates 
along certain direction.

There are many methods to solve convection diffusion equations. 
Compact difference method (CDM) [14-18], due to its simple nature 
and convenience in implementation, offers high order algebraic 
convergence and uses smaller stencils than finite difference method. 
But the linear system is usually twice or even three times bigger than 
the one from finite difference. Finite element method (FEM) is known 
for handling geometrical complexity. Fletcher et al. obtained finite 
element solution to convection diffusion equations [19,20]. However, 
FEM is limited in acquiring higher order accuracy as basis functions 
become less orthogonal mutually once the order of basis functions 
increases beyond fifth and mass matrices become ill-conditioned. For 
high accuracy resolution, although one could use h-type discretization 
refinement, i.e., smaller and more elements, rounding errors would 
accumulate and even defeat accuracy at certain point. Spectral element 
method (SEM), first appeared in [21], could be a good alternative. It 
achieves very high accuracy (e.g. 15th) by using orthogonal polynomial 
bases and zeros of orthogonal polynomials as quadrature points. SEM 
is capable of hp-refinement, and especially the p-type refinement 
which enhances resolution without extra numbers of elements [22-
24]. Due to the capability of handling complexity geometry and both 
hp-type refinement for high accuracy, SEM has successfully appeared 
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solutions were used for error comparisons. Pros and cons of these four approaches for handling nonlinearity were 
reviewed and discussed. This study provides a reference in solving nonlinear PDE with different options.
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in computational fluid dynamics [21,25-34], especially in simulating 
microfluidic devices [35-41]. SEM could also be used to model advanced 
microfluidic biosensors [42] with applications in magnetic labeling, 
sorting, medical diagnostics, and weak magnetic field detection [43].

Another relatively new approach, discontinuous Galerkin finite 
element method (DG- FEM), has been successful in handling nonlinear 
PDE in which nonlinear terms are written in conservative forms [22,44-
54]. Using discontinuous basis functions and appropriate numerical 
fluxes at boundaries, DG-FEM is free from the C0 constraint on basis 
functions and is capable of capturing discontinuity in the solution. 
How to choose numerical fluxes is crucial to some strong hyperbolic 
equations.

In this paper, we discuss four different approaches, namely Method 
I: Taylor expansion, Method II: Cole-Hopf transformation, Method 
III: Compact Difference Preprocessing, and Method IV: Conservative 
Form, to handle nonlinearity. With these approaches, we produce 
numerical solutions to one and two dimensional convection diffusion 
equations using a blend of CDM, FEM, and SEM. Convergence rates are 
demonstrated in h-type and/or p-type refinement tests. Pros and cons 
of different approaches are discussed to provide a reference for solving 
nonlinear PDE in multiple dimensions and systems of nonlinear PDE.

Methodology and Numerical Examples
We consider convection diffusion equations in one or two 

dimensional domains:

( ) , 0,in and dt
t
u u u um

¶
+ ×Ñ = D W ³

¶
   		               (1)

where µ is the dynamic viscosity. In some occasions, for the 
convenience of discussion, we treat the viscosity as a small value and 
drop the diffusion term; therefore, the convection diffusion becomes 
the inviscid Burgers’ equation. In order to verify the accuracy of 
numerical solutions, we need an exact solution to compute the norm 
of errors at all quadrature points. Therefore, the convection diffusion 
equation was modified with the diffusion term replaced by a known 
function of space and time. In some examples, we solve the following 
modified convection diffusion equations instead:

( ) ( , ).t
t

¶
+ ×Ñ =

¶
u u u f x 				                     (2)

In the following subsections, four different approaches are 
discussed to handle nonlinearity in one dimensional (1D) or two 
dimensional (2D) situations. Numerical solutions are provided with 
SEM, FEM, CDM or a blend of the above.

Linearization with Taylor expansion (Method I)

We start with the following simplest nonlinear PDE:

( , ), 1 2, 0,x
u uu f x t x t
t

¶
+ = £ £ ³

¶
                                  (3)

0u(x, 0) = u (x),  				                (3a)

1u(1, t) = f (t),  				                 (3b)

and use two different discretization methods in time and space in 
subsequent discussions.

Backward Euler and finite element method

Discretizing Equ. (3) implicitly in time, we obtain:

1
1 1 1.

n n
n n n

x
u u u u f

t

+
+ + +-

+ =
D

 			                 (4)

Due to the nonlinear term, we could not directly treat the entire 
convective term implicitly, because after a Galerkin projection, there 
will be three different indices for the nonlinear term. Therefore, we 
attempted to linearize Equ. (4). The first approach to handle nonlinear- 
ity, denoted as Method I, applies the Taylor expansion to the coefficient 
of un+1 in time and repetitively replace time derivatives with space 
derivatives using the exact information in the governing PDE. This 
linearization is similar to the general idea of Lax-Wendroff scheme 
[55,56,57], except we use first or higher order Taylor expansion [58] to 
achieve higher accu- racy and implement a finite element or high order 
difference method to compute the spatial derivatives. The CFL number 
here is no more than 1. The first order approximation for the nonlinear 
term has the second order truncation error in time:

1 1 2 1 1( ( )) ( ) .n n n n n n n n
x t x t xu u u tu O t u u tu u+ + + += +D + D » +D  (5)

Substitute Equ. (5) into Equ. (4), we have:
1

1 1( ) .
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t x

u u u tu u f
t
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+ +D =
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 		                  (6)

Using the exact information from the PDE: n n n n
t xu f u u= - , we 

substitute it into Equ. (6):

1
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 	                 (7)

Let (un)∗=un+∆tf n−∆tunun, which is known at the time step n, then 
Equ. (7) becomes a linearized ordinary differential equation:

1
* 1 1( ) .
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x
u u u u f

t

+
+ +-

+ =
D

 			                 (8)

Next we apply the nodal Galerkin projection to form a linear 

system A Û = B  . We divide the domain into N elements. Within each 
element Ωe, we expand u and ux in kth order Lagrangian basis functions 
over k+1 uniform points in order to simplify the evaluation of (un)*, 
although an alternative way could use Lagrangian basis function over 
Gauss-Lobattolegendre points. In a typical element Ωe:

1 1

0 0

ˆ ˆ( ), ( ),
k k

n n n n
i i i i

i i

u U x u U xf f+ +

= =

= =å å  		                (9)
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0
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i
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Substituting Equs. (9) and (10) into Equ. (8) and applying Galerkin 
projection, we obtain the weak form of Equ. (8) within one element Ωe:

1
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where (U n)∗ denotes the expansion term for (un)∗ at the point of i. 
After global assembling, the matrix-vector form of Equ. (8) is:

1
1 1

ˆ ˆ ˆ ,
n n
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t
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			                (12)

1 ( , 1) ( ) ,
e

n
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W
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where, M is the global mass matrix; Fn+1 is obtained by global assembly; 
the matrix K is obtained by the scalar multiplies global advection 
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matrix. If we choose a linear expansion basis, the matrix K has a 
tridiagonal form as below, while if quadratic and cubic basis function 
and pentadiagonal and seven-diagonal matrix for using respectively:

22 2 22 2
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1 2 1 1 1 1 1 1
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In which, ˆ ˆ ˆU  = U  + tF  - t(U U ) , l∆ ∆n n n n
l l l x l  stands for the numbering of 

global points, and each Klm corresponds to the entry of global advection 
matrix at l, m. Here, l and m is from 2 to N, since boundary points at 
1 and N+1 are known. The key idea here is to treat (un)∗ explicitly and 
take it as a scalar multiplier for un+1, which is treated implicitly, then 
include it into the global advection matrix to form matrix K. Therefore, 
we obtain a set of discretized equations with only two indices which are 
represent Table 1 in a linear system.

Finally, Equ. (12) becomes:

1 1ˆ ˆ( ) .n n nM tK U MU tF+ ++D = +D  		              (14)

To examine the accuracy of this approach, we set up the problem 
as below:

( ) (2 2 )( , ) ,1 2, 0,x t x t
x

u uu f x t e e x t
t
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¶
                  (15)

subject to the boundary and initial conditions:

u(1, t) = e1−t, u(x, 0) = ex.                                                                     (16) 

The analytic solution to this well-posed problem is:

u(x, t)=ex−t.                                                                                           (17)

Since this problem is time-dependent, time integrations are crucial 
in numerical solutions. We attempted both implicit and explicit time 
integration. The CFL condition (for the latter) and the diffusion 
condition were satisfied by restricting the time step to be small enough:

,
max

xt
U
D

D <  					                 (18)

2

,xt
m

D
D <  					                   (19)

where Umax is the maximum of absolute phase velocity, ∆t and ∆x are 

time step and distance between quadrature points, respectively, and µ 
is the diffusion coefficient Table 2.

When we choose linear, quadratic, and cubic bases in space and 
backward Euler in time, the error estimations are order of O(∆t1+∆x2), 
O(∆t1+∆x3), O(∆t1+∆x4), respectively. We compute the Euclidean 
norm of errors (L2 Error) at all nodes. Figure 1 presents the L2 Error 
versus the number of elements in the log-log scale at a fixed time step 
∆t=10−4. The convergence rates are basically one order higher than the 
order of expansion functions. To investigate the order of accuracy in 
time, we fix element number N=10, and vary ∆t=0.01, 0.005, 0.0025, 
0.00125. Using a first order Taylor expansion in the log-log scale, the 
first order convergence in time is observed in Figure 2. When we switch 

Order α β A B C
4th 1/4 0 3/2 0 0
6th 1/3 0 14/2 1/9 0
8th 4/9 1/36 40/27 25/54 0

Table 1: Where the coefficients are.

order α β g A B C D E G H

4th 1 3 -17/6 -17/6 3/2 3/2 -1/6 0 0 0
5th 1 4 -37/12 -37/12 2/3 3 -2/3 1/12 0 0
6th 1 5 -197/60 -197/60 -5/12 5 -5/3 5/12 -1/20 0
7th 1/10 1 -227/600 -227/600 -13/12 7/6 1/3 -1/24 1/300 0
8th 1/12 1 -79/240 -79/240 -77/60 55/48 5/9 -5/48 1/60 -1/720

Table 2: Where the coefficients are.

Figure 1: Convective Equ. (15) linearized with Method I: Algebraic 
convergence in space at a fixed time step ∆t=10−4.

Figure 2: Convective Equ. (15) linearized with Method I: Temporal 
convergence at a fixedspatial resolution of using 10 elements for a total time 
of 0.2 dimensionless unit.
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it to the second order Taylor expansion, a second order accuracy in 
time is obtained as shown in Figure 3.

Crank-Nicholson and compact difference method

We test the same approach for nonlinearity but using the Crank-
Nicholson scheme in time and compact method in space for Equ. (3):

1 1 1 1

.
2 2

n n n n n n n n
i i i xi i xi i iu u u u u u f f

t

+ + + +- + +
+ =

D
 		               (20) 

To linearize the term 1 1n n
i xiu u= = , we use the Taylor expansion in 

time again to express un+1 with some terms in the time level n, such 
that 1n

iu =  is replaced with *
iu . Therefore, Equ. (20) becomes:

1 * 1 1

.
2 2

n n n n n n n
i i i xi i xi i iu u u u u u f f

t

+ + +- + +
+ =

D
     	                (21)

In order to keep the 2nd order temporal accuracy, we use a few 
more terms in the expansion such that

2
1 1 3 1[ ( )] .

2
n n n n n n
i xi i t i tt i xi

tu u u tu u O t u+ + +D
» +D + + D 	               (22)

After truncating the 2nd order term, we have:

1 1 1[ ] ,n n n n n
i xi i t i xiu u u tu u+ + +» +D 			             (23)

in which, ut
n can be obtained from the PDE exactly:

.n n n n
i xi i t iu u f u= - 				              (24)

Hence, Equ. (20) becomes linearized as below:
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Rearrange the above equation, we have:
1 1 1( ( )) ( ).

2 2 2
[ ] [ ]n n n n n n n n n n n

i i i i xi xi i i xi i i
t t tu u t f u u u u u u f f+ + +D D D
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We use the following 4th order Pa´de scheme to compute un+1 and 
ux

n+1 simultaneously:

41 1
1 1

3 3
4 ( ).i i

xi xi xi
u u

u u u O h
h

+ -
- +

-
+ + = +  		               (27)

To examine the spatial and temporal accuracy of using Crank-
Nicholson and Compact Difference, we use the same problem as 
before, Equs. (15) and (16), with the same exact solution Equ. (17). 
For the spatial error only, we fix ∆t=0.0001, compute u(x, 0.0001), 
and compare it with the exact solution in L2 error. We notice that the 
number of elements N=10, 20, 30, 40 increases, the error goes down 
consistently. We observed that the order of convergence rate is close to 
4th in space, as shown in Figure 3.

Figure 4 illustrates a temporal convergence rate close to the second 
order at the total time of 1. In this Figure 5, we set the time step to 
be ∆t=0.001, 0.0005, 0.00025, 0.000125, use only 21 elements in space. 

Figure 3: The convective equation (15) linearized with Method I: Convergence 
in space at afixed time step.

Figure 4: The convective equation (15) linearized with Method I: Convergence 
in time at afixed spatial resolution.

Figure 5: Evolution of numerical solution of 1D convection diffusion equation 
(28) linearizedwith Method II: Cole-Hopf transformation.
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Since the Crank-Nicholson was used in time and 4th order Pa´de 
schemes in space, the second order convergence in time is anticipated.

In summary, the idea of using Taylor expansion to express an 
unknown of time level n+1 explicitly to approximate nonlinearity is 
convenient and stable, provided that CFL condition is obeyed. This 
idea is rather simple and could be used as long as an explicit expression 
for time derivative is possible or other approaches are difficult to use.

Linearization with Cole-Hopf transformation (Method II)

One-dimensional convection diffusion equation: Now we include 
the diffusion and consider the one dimensional convection diffusion 
equation:

,x xx
u uu u
t

m
¶

+ =
¶

 				                 (28)

with the initial condition and two Dirichlet boundary conditions below:

u(x, 0) = f (x),0 ≤ x ≤ 1,                                                                     (28a)

u(0, t) = α(t),u(1, t) = β(t),t ≥ 0.	      (28b) 

With the Cole-Hopf transformation [2]:

( , )( , ) 2 ,
( , )

xw x tu x t
w x t

m=-  	         (29)

the original equation becomes a linear heat equation of in w(x, t),

,0 1, 0xx
w w x t
t

m
¶

= £ £ ³
¶

   			                 (30)

with new initial and boundary conditions as below:

0

( )
2( ,0) , 0 1,

x f s ds
w x e xm

-ò
= £ £  		             (30a)

2 (0, ) ( ) (0, ) 0, 0,xw t t w t tm a+ = > 		              (30b)

2 (1, ) ( ) (1, ) 0, 0.xw t t w t tm b+ = >  		               (30c)

We solve the transformed linear equation, then use the inverse 
transformation, i.e., Equ. (29), to acquire the solution to the original 
problem.

Two-dimensional convection diffusion equation: For two-
dimensional domains, the Cole-Hopf transformation [59] is given 
below:

( , , )( , , ) 2 ,
( , , )

xw x y tu x y t
w x y t

m=-  		                                (31)

( , , )
( , , ) 2

( , , )
yw x y t

v x y t
w x y t

m=-  		                               (32)

We could transform the vector form of convection diffusion 
equation, Equ. (1), into a scalar equation,

, 0w w in and t
t

m
¶

= D W ³
¶

    			               (33)

To obtain numerical solutions, we compute w in Equ. (33) with 
the nodal spectral element method using high order Lagrangian 
interpolants. Then we use high order finite difference schemes to 

compute wx and wy from w. Finally, u and v could be obtained from 
w using Equs. (31) and (32), respectively. When we use the kth order 
Lagrangian interpolants as the basis functions, in order to guarantee 
the exponential convergence, we used k + 1st order difference schemes 
to compute wx and wy .

Numerical results: One-dimensional Example:

To validate Method II in one dimension (1D), we solve Equ. (28) 
with µ=0.02, u(x,0)=sin(πx), 0 ≤ x ≤ 1, and α(t)=β(t)=0. After the Cole-
Hopf transformation, we have the heat equation in the new variable 
w(x) with new initial and boundary conditions:

( ) 1
2( ,0) , 0 1,

cos x

w x e x
p
pm

-

= £ £  			                (34)

(0, ) (1, ) 0, 0.x xw t w t t= = ³  			                (35)

Since the original nonlinear PDE becomes linear, we use implicit 
treatment in time and finite element method in space. After we obtain 
the solution in w(x), we use Cole-Hopf inverse transformation of to 
obtain the numerical solution to the original problem. Figure 5 shows 
the numerical solution to the 1D problem at different time. The number 
of elements is fixed to be 10. As in the figure, the wave propagates 
towards right and forms a wave front, and the magnitude of the wave 
decreases with the time due to the viscous dissipation. We used cubic 
basis functions, as the number of elements varying from 10, 20, 30, 40, 
to 50, the 4th order convergence rate in space was obtained as shown 
in Figure 6, where the time step was ∆t=0.0001. For the following two 
dimensional (2D) situations, we test two examples using different 
initial and boundary conditions.

Two-dimensional Example I:

We set the viscosity µ=0.02 and the initial and boundary conditions 
for Equ. (1) as below:

u(x, y, 0)=sin(πx) sin(πy), v(x,y,0)=y,Ω : 0 ≤ x, y ≤ 1, t ≥ 0.       (36)

u(x,y,t)=0,v(x, y, t) = y,x, y ∈ ∂Ω,	                (37)

We perform the Cole-Hopf transformation to reduce a vector PDE 

Figure 6: Spatial convergence for the convection diffusion equation (28) 
linearized withMethod II: Cole-Hopf transformation.



Citation: Liu D, Wang Y (2015) High Order Numerical Solutions to Convection Diffusion Equations with Different Approaches. J Appl Computat Math 
4: 208. doi:10.4172/2168-9679.1000208

Page 6 of 14

Volume 4 • Issue 2 • 1000208
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

in u(x,y,t) into a scalar one in w(x,y,t). The domain was divided into 
4 elements. Nodal SEM with 5th order basis function and Lagrangian 
interpolants over Gauss-Lobatto-Legendre points were used to solve 
the 2D scalar heat equation. We still use Lagrangian interpolation and 
difference method to compute wx and wy. By Equs. (31) and (32), 
we found the solutions to u(x,y) for the original problem. Figure 7a 
and b show the contour lines for the velocity component u and v at 
t=0.1, respectively. Figure 7c illustrates the elements and quadrature 
points. Figure 7d shows the vector field of u=(u,v). Because velocity 
components u and v were asymmetric and coupled together, the vector 

field convects in both x and y directions.

Two-dimensional Example II:

In the second test, we change the domain into Ω={(x, y): 0 ≤ x, y ≤ 
2π}, set µ=0.005, and use new initial conditions

u(x,y,0)=e(1−(x−π)2−(y−π)2),                                                         (38)

v(x,y,0)=sin(x)sin(y),                                                                          (39)

and new boundary conditions on the boundary ∂Ω

u(x,y,t)=0,v(x,y,0)=0,x,y ∈ ∂Ω.	             (40)

The domain was divided into 16 elements. We used the nodal 
SEM with 5th order basis function in each direction in each element to 
solve the 2D heat equation. Then, we used Lagrange interpolation and 
compact schemes to compute the first derivatives. Finally, solu- tions 
for u and v were obtained from Equs. (31) and (32). Numerical results 
were shown at time t=0.5. Figure 8a and 8b show contour lines for u 
and v, respectively. Figure 8c illustrates 16 elements and quadrature 
points. Figure 8d is the vector field for u=(u, v).

Generally speaking, Cole-Hopf transformation offers two 
advantages: reducing a vector equation into a linear scalar one and 
allowing an implicit temporal treatment in which the time step 
is unrestricted by the stability condition and time integration is 
unconditionally stable. However, Cole-Hopf transformation could 
only be applied to certain nonlinear PDE [58], such as hyperbolic 
PDE which contains second or higher spatial derivatives [60] and the 
Korteweg-de Vries equation (KdV equation) [61]. Chu et al. [62] listed 
a system of PDE with second order spatial derivatives that Cole-Hopf 
transformation is applicable.

Compact Difference Preprocessing (Method III)

Consider the 1D nonlinear problem in Equs. (3), (3a), (3b), and 
(3c), we linearize it by treating ux explicitly as the coefficient of u. 
This is called Method III in this paper, which is an explicit and non-
conservative method [58]. The linearized equation below could be 
solved with an explicit scheme:

1

(( ) ) ,
n n

n n n
x

u u u u f
t

+ -
+ =

D
 			                 (41)

or implicit scheme:
1

1(( ) ) .
n n

n n n
x

u u u u f
t

+
+-

+ =
D

 			             (42)

The success of Method III relies on the accuracy of evaluating ux. 
We compute the nodal values of ux with high order compact difference 
[15-17,63] schemes before multiplying u. To demonstrate the idea of 
Method III, we compute ux at interior points with sixth order compact 
difference scheme as shown below:

1 6
1 1 2 1 1 212( ) 36( ) 12( ) ( 28 28 ) ( ),x i x i x i i i i iu u u h u u u u o h-

- + - - + ++ + = - - + + +         (43)

where h=1 . For boundary points, we use Dirichlet boundary conditions 
(for simplicity) and the following sixth order scheme:

1 6
1 1 1 2 3 460( ) 300( ) (197 25 300 100 25 3 ) ( ).x i x i i i i i i iu u h u u u u u u o h-

- - + + + +- - = + - + - + + (44)

Once we computed the values of ( )n
x iu at all points, Equs. (41) 

and (42) are linearized.We divide the whole domain into a total of 
N elements (Ωe) and express un and un+1 with expansions of basis 
functions (for example, linear) on each element:

 

Figure 7: The two-dimensional convection diffusion equation (28) (Example 
I) linearized withMethod II: Velocity components u, v, the computational 
elements and quadrature points.

 
Figure 8: The two-dimensional convection diffusion equation (28) (Example 
II) linearizedwith Method II: Velocity components u, v, the mesh with 16 
elements and quadrature points.
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1

0

ˆ ( ),n n
i i

i

u U xf
=

=å  				                (45)

1
1 1

0

ˆ ( ).n n
i i

i

u U xf+ +

=

=å  				                  (46)

Then we use the Galerkin projection to acquire the weak form of 
Equ. (42):

11 1
1

0 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) , 0,1.
e e e

n n
n n ni i

i j i j x i i j
i i

U Ux x dx x x dx u U f x dx j
t

f f f f f
+

+

W W W= =

-
+ = =

Då åò ò ò   (47)

After global assembling procedure, the linear system of Equ. (42) 
in vector form is:

1
* 1

ˆ ˆ ˆ ,
n n

n nU UM M U F
t

+
+-

+ =
D

 			                 (48)

in which, M is the global mass matrix; nF is the assembled RHS of the 
Equ. (47) over all element. The matrix consists of the products of 
the global mass matrix and the explicit values of ( )n

x iu  given by Equs. 
(43) and (44). The matrix M∗ has the following form:

22 x 2 23 x 2

32 x 2 33 x 2 34 x 2

43 x 2 44 x 2 45 x 2

1 2 x 1 1 1 x 1 1 x 1

1 x

(u ) (u ) 0 ... ... 0
(u ) (u ) (u ) 0 ... ...
0 (u ) (u ) (u ) ... ...
... ... ... ... ... ...
... ... ... ... ... 0
... ... 0 (u ) (u ) (u )
0 ... ... 0 (u )

n n

n n n

n n n

n n n
N N N N N N N N N

n
NN N NN

M M
M M M

M M M

M M M
M M

- - - - - - - -

- x(u )n
N

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

For the convenience of time integration, Equ. (48) can be written as:
* 1ˆ ˆ( ) .n n nM tM U MU tF++D = +D  		                (49)

Method III can readily be a high order scheme by adopting higher 
order compact schemes to evaluate ux on equispaced grids and use 
higher order polynomials as basis functions in a Galerkin finite 
element method. Using cubic or quartic basis functions could provide 
solu- tions with decent algebraic convergence. Beyond fifth order, the 
convergence rate starts to deteriorate due to the Runge’s phenomenon 

and a spectral element method using orthogo- nal bases is a better 
alternative. We demonstrate this by using Lagrangian interpolation for 
ux from a uniform finite difference grid to Gauss-Lobatto-Legendre 
quadrature points. For two dimensional situation, the same idea works 
since Lagrangian interpolation in 2D can be utilized to calculate first 
derivatives of u at Gauss-Lobatto-Legendre points.

To test the accuracy of Method III in 1D, we consider the previous 
problem with the initial and boundary conditions in Equs. (15) and 
(16). We choose linear basis functions in space and forward Euler 
method in time, and use the 2nd order central difference scheme to 
compute value of ux. Therefore, the estimated error is of order O(∆t1 
+ ∆x2). The CFL condition is obeyed with ∆t=10−4. By varying the 
spatial resolution, the number of elements from N=5 to 35, we present 
the spatial convergence in the log-log scale in Figure 9. The order of 
convergence is almost 2.

To examine the order of accuracy in time, we fix N=10 and decrease 
∆t=0.01, 0.005, 0.0025, 0.00125. The time convergence rate is almost 
one, as shown in the log-log scale in Figure 10. This convergence rate is 
expected because the forward Euler method was used.

For two-dimensional convection diffusion equations, we 
denote velocity components with u, v along x and y and let f, g be 
corresponding forcing terms. We perform linearization and set up the 
following implicit schemes:

1
1 1 1( ) ( ) ,

n n
n n n n n

x y
u u u u u v f

t

+
+ + +-

+ + =
D

 	               (50)

1 1
1 1 1 1 1 1( ) ( ) , ( ) ( ) .

n n n n
n n n n n n n n n n

x y x y
u u v vu u u v f v u v v g

t t

+ +
+ + + + + +- -

+ + = + + =
D D

  (51)

The derivative terms, ux, uy , vx and vy , at interior points, were 
computed from u and v at time level n using compact difference 
method given below [64] and were treated as known coefficients in 
Equs. (50) and (51):

3 3 2 2 1 1
2 1 1 2 ,

6 4 2
i i i i i i

i i i i i
f f f f f f

f f f f f C B A
h h h

b a a b + - + - + -
- - + +

- - -¢ ¢ ¢ ¢ ¢+ + + + = + +   (52)

 

Figure 9: The 1D convective equation linearized with Method III: Convergence 
in space ata fixed time step.

Figure 10: The 1D convective equation linearized with Method III: 
Convergence in time ata fixed spatial resolution.
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1 2 3 1 2 3 4 5 6 7
1 ( ),f f f Af Bf Cf Df Ef Gf Hf
h

a b g¢ ¢ ¢+ + = + + + + + +   (53)

After a Galerkin projection, Equs. (50) and (51) could form a 2N 
by 2N system:

111 2

11
3 4

* * ˆˆ * *
ˆˆ* * * *

n nn

n nn

M t M t M M U t FU
t M M t M M V t GV

++

++

é ù+D D é ùé ù +Dê ú ê úê ú =ê ú ê úê úD +Dê ú +Dê úê úë û ë ûë û
 (54)

where M is global mass matrix. M1, M2, M3 and M4 are constructed 
by following the same pattern as the products of global mass matrix 
and corresponding spatial differentiation (ux)n, (uy )n, (vx)n and (vy)n 
respectively.

To facilitate validation, we choose exact solutions of u, v as 
following:

( ) ( ),u sin x t sin y t= - -  			                (55)

,
2

( )xv sin t= -  				                (56)

2

( , , ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ),
2

f x y t cos x t sin y t sin x t cos y t
sin x t cos x t sin y t

xsin t sin x t cos y t

=- - - - - -

+ - - -

+ - - -

 (57)

1( , , ) ( ) ( ) ,
2 2 2

( ) ( )x xg x y t cos t sin x t sin y t cos t=- - + - - -   (58)

and the initial and boundary conditions are acquired from Equs 
(55) and (56). After we computed the first derivatives of velocity 
components with respect to x and y, we use two dimensional Lagrangian 
interpolants to compute their values at Gauss-Lobatto-Legendre 
quadrature points. Figure 11a and 11b show the contour lines of u 
and v at time t=0.5. Figure 11c shows four elements and the interior 
quadrature points. Figure 11d shows the velocity vector field. For all 
elements, the highest order of polynomial is 8. We pre-compute ux, uy, 

vx and vy with compact difference schemes of 8th order accuracy. Then 
we interpolate values of u and v on uniform grids to Gauss-Lobatto-
Legendre points and use the nodal SEM with 8th order basis expansions, 
which are Lagrangian interpolants on Gauss-Lobatto-Legendre points. 
The values of u and v could be computed with high accuracy.

Figure 12 presents exponential convergence of L2 norm of errors of u 
as the polynomial order varying from 2 to 8. We only derived and tested 
8th compact difference schemes for pre-processing first derivatives. It 
has been observed that Method III works well for convection diffusion 
equations. For irregular domains, we have to use a mapping and pre-
compute the first derivatives on a mapped grid or using full inclusion 
of metrics [17] which could add difficulty to Method III.

In summary, the approach of Compact Difference Preprocessing 
uses previously obtained values in prior time steps to compute 
unknowns explicitly. This way of handling nonlinearity provides 
convenience in decoupling PDE and especially for systems of PDE or 
multiple dimensions. It opens up the possibility of using an implicit 
method in time in which a large time step is feasible and is especially 
good for long time integration.

Using conservative form (Method IV): The one dimensional 
convection diffusion equation, Equ. (28), could be written in conserva- 
tive form [65], since it is always conservative in one dimensional 
situation (See the Appendix in Section 4). The approaching of casting it 
into conservative form is called Method IV.

2

.
2

( )x xx
u u u
t

¶
+ =

¶
 				               (59)

We use the forward Euler scheme in time for the above equation:

1 2

,
2

( )
n n

n n
x xx

u u u u
t

+ -
+ =

D
 				                  (60)

and discretize the whole domain into N elements. Within a typical 
element Ωe, we expand terms such as un, (u2)n and un with the kth 

 

Figure 11: Two dimensional convection diffusion equation linearized with 
Method III: Velocity components u, v and computational mesh.

Figure 12: Two dimensional convection diffusion equations linearized with 
Method III: p-Refinement.
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order Lagrangian interpolants φ on the k+1 2 xxx Gauss-Lobatto-
Legendre points:

0

ˆ ( ),
k

n n
i i

i

u U xf
=

=å  				                (61)

22

0

ˆ
( ),

2 2
( ) ( )

k
n ni
x i

i

Uu xf ¢
=

=å  			              (62)

0

ˆ ( ).
k

n n
xx i i

i

u U xf ¢¢
=

=å  				                  (63)

We substitute the above expansions into Equ. (60) and apply a 
Galerkin projection to obtain the weak form of Equ. (59) within Ωe:

1 2

0 0

0

ˆ ˆ ˆ
( ) ( ) ( ) ( ) )

2

ˆ( ) ( ) ) , 0,1... 1, ,

( )
e e

e

n nk k
ni i i

i j ji
i i

k
n
ii j

i

U U Ux x dx x x dx
t

x x dx U j k k

f f f f

f f

+

¢
W W= =

¢ ¢
W=

-
+ =

D

- = -

å åò ò

åò
 (64)

Note that within each time step, ( u2 )n is obtained explicitly from 
un. Assembling Equ. (64) over all elements, we obtain the global form 
of Equ. (60):

2
1

ˆˆ ˆ ˆ .
2

( ( ) )n n n nUMU MU t K LU+ = -D +  	                              (65)

In which, M , K and L are global mass, convection and stiffness 
matrices, respectively.

Two dimensional convection diffusion equation: For two 
dimensional convection diffusion equations, Equ. (1), subject to 
some initial and boundary conditions, we assume u and v are velocity 
components along x and y directions, respectively, and write Equ. (1) 
in the component form:

( ),x y xx yy
u uu vu u u
t

m
¶

+ + = +
¶

			                (66)

( ).x y xx yy
v uv vv v v
t

m
¶

+ + = +
¶

 			                  (67)

For Equs. (66) and (67), Method IV is only conditionally 
conservative [58]. The proof of this property is given in the Appendix 
in Section 4. Now we change Equs. (66) and (67) into the partial 
conservation form:

2

( ),
2

( )x y xx yy
u u vu u u
t

m
¶

+ + = +
¶

 		            (68)

2

( ).
2

( )x y xx yy
v vuv v v
t

m
¶

+ + = +
¶

 		              (69)

Unless we know that u=(u, v) is a conservative vector field, i.e., 
uy=vx, or incompressible flow field, i.e., ux+vy=0, we cannot take it 
for granted to change coupled terms vuy and uvx into conservative 
forms. In Equ. (68), the coupled term vuy remains nonlinear. We could 
linearize it by treating v explicitly as known coefficient for uy in Method 
IV. Similarly, the coupled term uvx in Equ. (69) is linearized by treating 
u explicitly as the known coefficient for vx.

In terms of spatial discretization, we first use rectangular elements 
(irregular elements are discussed later) and choose the kth order 
Lagrangian interpolants, Φ, on Gauss-Lobatto-Legendre points as the 
basis functions in both x and y directions, although different orders of 
bases could be used in x and y. In a typical element Ωe, we expand u(x, 
y) as below:

0 0

ˆ( , ) ( ) ( ).
k k

ij i j
i j

u x y U x y
= =

= F Fåå  			                (70)

Similarly for v. The derivatives of u with respect to x and y, 
respectively, are:

0 0

( )( , ) ˆ ( ),
k k

i
ij j

i j

xu x y U y
x x= =

¶F¶
= F

¶ ¶åå  		              (71)

0 0

( )( , ) ˆ ( ) .
k k

j
ij i

i j

yu x y U x
y y= =

¶F¶
= F

¶ ¶åå  		                  (72)

We perform a Galerkin projection with the test function w:

0 0

( , ) ( , ) ( ) ( )
k k

pq p q
p q

x y x y x y
= =

=F = F Fåå  		            (73)

to acquire a linear algebraic system about global variables.

Numerical examples one dimensional example: Consider the 
same 1D problem, Equs. (15) and (16) as in Method I, we use Method 
IV to solve it. We discretize the whole domain into 2 elements and use 
the forward Euler method in time. To achieve exponential convergence 
in space, we use SEM and perform a p-refinement by varying the 
order of polynomial basis functions. Figure 13 shows the exponential 
convergence with the order of polynomial basis functions versus the 
L2 norm of point-wise errors. Notice that, when polynomial order is 
less than 4, the exponential convergence of L2 norm of errors is not 
reached, because the approximation space have not been well set up 
yet. When the polynomial order is greater than 16, the L2 norm of error 
will not decrease any more and oscillate around 10−13 due to double 
decision rounding error.

Two Dimensional Rectangular Domain

The two dimensional computational domain is set to be Ω={(x, y) : 
0 ≤ x, y ≤ 1, t ≥ 0}. Equ. (1) is the governing equation and the initial and 
boundary conditions are generated from the exact solution of u and v 
which are given below:

Figure 13: One dimensional convection diffusion equation (28) with Method 
IV: p-Refinement.
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200( 4 4 )/32

3 1( , , )
4 4(1 )t x yu x y t

e - - += -
+

 		               (74)

200( 4 4 )/32

3 1( , , ) .
4 4(1 )t x yv x y t

e - - += +
+

 		               (75)

We use Method IV to solve the 2D problem on a rectangular 
domain, which was divided into 4 and 16 elements, respectively. 
Numerical results on 4 elements are shown in Figure 14 and on 16 
elements are shown in 15. In both figures, the top plots ((a) and (b)) 

show contour lines of the velocity component u and v, separately at t 
= 0.5. The plot (c) illustrates the elements and the quadrature points. 
The plot (d) shows the velocity vector field. The Reynolds number is 
about 200; therefore, the magnitude of solution waves decrease with 
time due to viscous dissipation. Figure 15 gives more details about the 
convective flow since it has higher resolution than Figure 14 using 4 
elements.

The exponential convergence in space is shown in Figure 16. 
Polynomial order were up to 40. The time step ∆t was chosen to satisfy 
the CFL and diffusion conditions. Specifically, we chose ∆t=0.001 and 
compared numerical result of u at time t=0.001 with the exact solution 
in the infinity norm. Using 16 elements gives faster convergence 
rate than using 4 elements and the error reaches machine zero at the 
polynomial order of 24.

Two-dimensional Irregular Domain

For the same problem as given in Equs. (66) and (67) but defined 
on an irregular domain with similar initial and boundary conditions 
that we designed here, we map the physical coordinates of (x, y) of 
a quadrilateral element Ωe to the coordinates (ξ1, ξ2) of a standard 
element (square) Ωst with the Jacobian:

1 2
2

1 2 2 1

1 2

.D

x x
x y x yJ

y y
x x

x x x x
x x

¶ ¶
¶ ¶ ¶ ¶ ¶ ¶

= = × - ×
¶ ¶ ¶ ¶ ¶ ¶
¶ ¶

 		                 (76)

For any convex quadrilateral element, we denote its vertices as A, 
B, C and D, and their coordinates as Ax, Ay , Bx, By , Cx, Cy , Dx and Dy. 
The components of the Jacobian are:

2

1

( ) ( ) ,
4

x x x x x x x xA B C D A B C Dx x
x

- + - + - + + -¶
=

¶
 (77)

2

1

( ) ( )
,

4
y y y y y y y yA B C D A B C Dy x

x

- + - + - + + -¶
=

¶
 (78)

 
Figure 14: Two dimensional convection diffusion equation, Equ. (1) with 
Method IV: Velocity components u, v with 4 elements N=4 and the polynomial 
order Po=10.

 

Figure 15: Two dimensional convection diffusion equation, Equ. (1) with 
Method IV: Velocity components u, v with 16 elements N=16 and the 
polynomial order Po=10.

Figure 16: Two dimensional convection diffusion equation, Equ. (1) with 
Method IV: hp-refinement in rectangular domain
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1

2

( ) ( ) ,
4

x x x x x x x xA B C D A B C Dx x
x

- + - + - - + +¶
=

¶
 (79)

1

2

( ) ( )
.

4
y y y y y y y yA B C D A B C Dy x

x

- + - + - - + +¶
=

¶
 (80)

With a known mapping and Jacobian, we could construct the 
mass, convection, and stiff- ness matrices for any convex quadrilateral 
element. Similar procedures were performed and Method IV was used 
to obtain numerical solutions.

Figure 17 shows the velocity component u, v at time t=0.5, 
quadrature points, and the velocity vector field. In this figure, the 
domain was divided into 4 elements and the spectral nodal element 
method with polynomials of order Po=10 in each direction and each 
element was used as in the simulation. We completed a very high order 
solution with nodal basis polynomial functions of order Po=35 using 
36 nodes, i.e., Gauss-Legendre-Lobatto points in each direction. This 
high accuracy solution was used as our “exact” solution to compute 
nodal errors for lower order runs. Figure 18 shows the L∞ norm of 
errors at all nodes versus the order of expansion polynomial order. A 
spectral convergence rate was shown in this figure. The solutions are 
consistent as the order increases.

In summary, Method IV is capable of capturing discontinuity 
developed in the solution and preserves good convergence rates which is 
unaffected by irregularity in geometry. This approach is very effective for 
strong hyperbolic equations provided that the conservative form exists.

Conclusion
In this paper, four different approaches for solving convection 

diffusion equations in 1D and 2D are discussed. Method I, II and III 
use linearization procedures which give the advantage of using an 
implicit time discretization and a large time step without the stability 
constraint. For the linearized problem, an implicit method in time 
such as Crank-Nicholson or backward Euler is preferred especially for 
long time integration. Spatial discretization methods used in this paper 
include spectral modal and nodal element, finite element, and compact 
difference. Of course other methods such as discontinuous Galerkin 
finite element or finite volume etc. are possible.

Since Method I uses a Taylor expansion in time to linearize a 
convective term, the trun- cation rror in time is consistent with the 
temporal discretization method. This method is simple and effective 
for strongly nonlinear terms such as (un+1)2un+1 as long as the first 
temporal derivative could be expressed in terms of the rest terms in the 
original PDE. The drawback of Method I is that it requires an explicit 
expression for the time derivative which could be difficult to derive 
for PDE with second or higher order temporal derivative and may 
introduce complexity in linearized equation.

Method II is an excellent approach for convection diffusion 
equations and possibly for other nonlinear equations if a Cole-Hopf 
transformation is applicable. The success of this method relies on 
performing a nonlinear transformation, which could reduce the 
original nonlinear vector form of PDE into a linear one. This is the 
major advantage of Method.

II. Apparently, both explicit and implicit time schemes can be 
used afterwards, although implicit is better in time integration. 
Nevertheless, the Cole-Hopf transformation is difficult for higher 
order spatial derivatives. Depending on the specific equation, it could 
be difficult to find analytical forms of transformed initial and boundary 
conditions. In general, it is not a trivial work to find a suitable Cole-
Hopf transformation for a nonlinear equation.

Method III is a good idea in this paper which uses compact 
difference method to pre-compute first order spatial derivatives so that 
a convective term could be approximated by the pre-computed value 
multiplying the unknown which could be treated implicitly. Basically, 
Method III uses previously obtained values to compute a part of the 
unknown explicitly. Handling nonlinearity in this approach provides 
convenience in decoupling PDE and especially for systems of PDE or 

x

 

Figure 17: Two dimensional convection diffusion equation, Equ. (1) with 
Method IV: Velocity components u, v and quadrature points in irregular domain

Figure 18: Two dimensional convection diffusion equation, Equ. (1) with 
Method IV: p-refinement in irregular domain
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multiple dimensions. It gives the convenience to use an implicit method 
in time in which a large time step is feasible and is especially good for 
long time integration. However, for irregular domains, Method III 
becomes complicated due to the spatial discretization and a mapping 
may be necessary. If SEM is used for numerical solutions, Method III 
requires deriving difference schemes on uniform grids to compute 
the first derivatives and then interpolate them to Gauss-Lobatto-
Legendre nodes. Method III could be improved by using schemes of 
full inclusion of metrics [16,17] on non-uniform grids or an efficient 
mapping between grids to compute the first derivatives.

Compared with the above approaches, in terms of convenience 
and efficiency, Method IV could be superior in dealing with strong 
nonlinearity and complex geometry. It is straight forward for general 
weighted residual methods and is simple for multiple dimensions, since 
generating conservative form does not rely on mesh grids. However, 
the disadvantage is that using conservative forms to treat nonlinear 
terms could make the state vector and the matrix system much larger 
than without using it. This could rely on more memory in computation.

In general, for nonlinear PDE, if possible, one could use Method II 
and design a Cole-Hopf Transformation, to reduce a multi-dimensional 
nonlinear PDE into a scalar linear PDE so as to bypass nonlinearity. 
Depending on the dimension and problem, alternatively, one could 
select an appropriate linearization with controlled errors to open an 
option for implicit time treatment, which relax the constraint on time 
step size and could be beneficial to long time integration. For solutions 
develops discontinuity or there is discontinuous initial or boundary 
conditions, Method IV, using conservative form is very effective and 
capable of capturing discontinuity. The accuracy is usually unaffected 
by complexity of geometry or discontinuity in the domain.

Appendix
For Method IV, the one dimensional convection diffusion equation, 

Equ. (28), is always conservative. To prove this claim, we use the chain 
rule backward for the convective term:

2

,
2

( )x xx
u u u
t

¶
+ =

¶
 				                (81)

then we introduce new variables F and G, respectively:
2

,
2

uF =  					                (82)

,xG u=  					                (83)

then we change Equ. (81) into the following:

0,x x
u F G
t

¶
+ - =

¶
				                 (84)

which is conservative. Therefore, the one dimensional convection 
diffusion equation is always conservative.

However, the two dimensional convection diffusion equations 
are not always conservative [58] because of the existence of coupled 
terms. Again, we use the chain rule backward in the two dimensional 
component-wise convection diffusion equation for the convective 
terms to obtain the partial conservative forms:
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¶

 		                 (86)

Focusing on two coupled terms above, we use the chain rule to 
form below equations:

(vu)y=vy u + vuy,                                                                            (87)

(uv)x=uxv + uvx.                                                                              (88)

If the irrotaional condition is valid for the vector field which 
is defined as u=(u, v), i.e., conservation of the total pressure in an 
irrotational flow [66], then we have the following:

,y x
u v u v
y x

¶ ¶
= Û =

¶ ¶
 				                (89)

which is equivalent to the vorticity-free condition in fluid mechanics:

∇×u=0,                                                                                                 (90)

By Equ. (89), we replace vuy with vvx in Equ. (85) and put vvx in 
conservative form:

2 2

( ).
2 2
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u u v u u
t

m
¶

+ + = +
¶

 		                (91)

By Equ. (89), we replace uvx with uuy in Equ. (86) to and put uuy 
in conservative form:

2 2
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2 2
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v u v v v
t

m
¶

+ + = +
¶

 		              (92)

Now Equs. (91) and (92) are both conservative.

Alternatively, if the incompressible flow condition is satisfied by 
the vector field which is defined as u = (u, v), i.e., conservation of mass, 
then we have the following equations:

0 x y
u v u v u v
x y x y

¶ ¶ ¶ ¶
+ = Û =- Û =-

¶ ¶ ¶ ¶                               (93)

which is equivalent to the divergence-free condition in fluid mechanics:

∇·u=0,                                                                                                   (94)
then we replace −vy with ux in the variation of the convective term vuy 
in Equ. (85) so that vuy becomes:

2

( ) ( ) ( ) ,
2

( )y y y y x y x
uvu vu v u vu u u vu= - = + = +  	                 (95)

then Equ. (85) becomes:
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  (96)

Now the new form of Equ. (85) is already in conservative form. 
Similarly, we replace ux with −vy in the variation of the convective 
term uvx in Equ. (86) so that uvx becomes:

2

( ) ( ) ( ) ,
2

( )x x x x y x y
vuv uv u v uv vv uv= - = + = +                (97)

then Equ. (86) becomes:

2 2
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m
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Now the new form of Equ. (86) is also in conservative form. To 
summarize these proofs:

1.	 The one dimensional convection diffusion equation is 
conservative.
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2.   If ∇×u=0 is valid, then the dimensional convection diffusion 
equation is in conservative form:

2 2
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u u v u u
t

m
¶
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¶
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If ∇ · u = 0 is valid, then the two dimensional Burger’s equation is 
in conservative form:
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