

Impact of Hydroxyapatite Nanoparticle Shape on Zebrafish Exposure Model Embryonic Development

Grace Nexo*

Department of Morphology, Monash University, Clayton, Victoria, Australia

Introduction

Nanotechnology has revolutionized various scientific domains, including biomedicine, materials science, and environmental science. Among these, Hydroxyapatite Nanoparticles (HAp-NPs), mimicking the natural mineral found in bones and teeth, have gained attention for their biocompatibility and applications in drug delivery, bone tissue engineering, and dental restorations. However, their increasing usage has raised concerns regarding their potential environmental and biological impacts. The zebrafish embryonic model provides a robust and efficient system to study these effects due to its genetic similarity to humans, rapid development, and transparency during embryogenesis. This article explores how the shape of hydroxyapatite nanoparticles influences the developmental processes of zebrafish embryos, shedding light on the intricate relationship between nanomaterials' physical characteristics and biological systems [1].

The shape of nanoparticles is a critical determinant of their biological interactions. It governs parameters such as cellular uptake, biodistribution, and potential toxicity. Hydroxyapatite nanoparticles are synthesized in various morphologies, including spherical, rod-like, and needle-like shapes, each with distinct surface areas and interaction potentials. These variations influence the extent to which nanoparticles interact with biological membranes, penetrate cells, and engage in biochemical processes. For zebrafish embryos, which develop outside the mother's body in a controlled aquatic environment, exposure to HAp-NPs of different shapes offers a unique opportunity to observe and analyze their impact on embryonic development [2].

Description

Zebrafish embryos are particularly sensitive to environmental changes, including chemical and nanoparticle exposures. Their transparent chorion facilitates real-time monitoring of developmental milestones such as gastrulation, organogenesis, and hatching. This feature makes zebrafish an ideal model for assessing how nanoparticle shape affects biological outcomes. When hydroxyapatite nanoparticles are introduced into the zebrafish aquatic environment, they interact with the embryos through diffusion and direct contact, potentially influencing processes like cell division, differentiation, and morphogenesis. Understanding these interactions is crucial for predicting potential risks associated with nanoparticle exposure in aquatic ecosystems and beyond [3].

Studies have shown that the needle-like morphology of HAp-NPs tends to exhibit higher cellular penetration and potential cytotoxicity compared to spherical or rod-like counterparts. This is attributed to their high aspect ratio, which enhances their interaction with cell membranes and intracellular structures. When zebrafish embryos are exposed to needle-shaped hydroxyapatite nanoparticles, adverse outcomes such as delayed development, abnormal heart rates, and altered pigmentation patterns have

been observed. These effects stem from the nanoparticles' ability to disrupt critical signaling pathways during embryogenesis, leading to developmental anomalies [4].

On the other hand, spherical hydroxyapatite nanoparticles, characterized by their lower surface area and interaction potential, tend to exhibit less pronounced biological effects. Their symmetrical structure minimizes membrane penetration and cellular stress, resulting in comparatively milder developmental disturbances. Similarly, rod-like nanoparticles, with intermediate properties, elicit effects that fall between those of needle-shaped and spherical HAp-NPs. These findings highlight the importance of nanoparticle shape in determining their biocompatibility and toxicity.

One of the key mechanisms through which hydroxyapatite nanoparticles influence embryonic development is the generation of Reactive Oxygen Species (ROS). ROS are chemically reactive molecules that play dual roles in biological systems. While they are essential for cellular signaling and homeostasis, excessive ROS levels can lead to oxidative stress, damaging proteins, lipids, and DNA. Needle-shaped HAp-NPs, with their higher aspect ratio, are particularly effective at generating ROS, contributing to oxidative stress in zebrafish embryos. This oxidative stress disrupts normal cellular processes, including cell cycle regulation and apoptosis, ultimately impairing embryonic development [5].

Conclusion

To mitigate the potential risks associated with hydroxyapatite nanoparticles, researchers and manufacturers must prioritize the design and synthesis of biocompatible and environmentally safe materials. Tailoring nanoparticle shape and surface properties to minimize adverse effects without compromising functionality is a crucial step in achieving this balance. Regulatory frameworks should also incorporate shape as a critical parameter in nanoparticle risk assessment and safety evaluation.

The impact of hydroxyapatite nanoparticle shape on zebrafish embryonic development underscores the intricate interplay between nanomaterials and biological systems. By leveraging the strengths of the zebrafish model, researchers have unraveled the shape-dependent effects of these nanoparticles, paving the way for safer and more sustainable nanotechnologies. As the field of nanotechnology continues to expand, understanding and mitigating the potential risks associated with nanoparticle exposure will be essential for realizing their full potential in biomedical and environmental applications.

Acknowledgement

None.

Conflict of Interest

None.

References

- Sharifi, Shahriar, Shahed Behzadi, Sophie Laurent and M. Laird Forrest, et al. "Toxicity of nanomaterials." *Chem Soc Rev* 41 (2012): 2323-2343.

*Address for Correspondence: Grace Nexo, Department of Morphology, Monash University, Clayton, Victoria, Australia; E-mail: grace063@monash.edu

Copyright: © 2024 Nexo G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 02 November, 2024, Manuscript No. jma-24-153254; Editor Assigned: 04 November, 2024, PreQC No. P-153254; Reviewed: 16 November, 2024, QC No. Q-153254; Revised: 21 November, 2024, Manuscript No. R-153254; Published: 28 November, 2024, DOI: 10.37421/2684-4265.2024.08.351

2. Hak, David J. "The use of osteoconductive bone graft substitutes in orthopaedic trauma." *JAAOS-J Am Acad of Ortho Surg* 15 (2007): 525-536.
3. Chakraborty, Chiranjib, Ashish Ranjan Sharma, Garima Sharma and Sang-Soo Lee. "Zebrafish: A complete animal model to enumerate the nanoparticle toxicity." *J Nanobiotechnol* 14 (2016): 1-13.
4. Oberdörster, Günter, Juraj Ferin and Bruce E. Lehnert. "Correlation between particle size, in vivo particle persistence, and lung injury." *Environ Health Persp* 102 (1994): 173-179.
5. Xu, Zhen, Ya-Lei Zhang, Cao Song and Ling-Ling Wu, et al. "Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development." *PLoS One* 7 (2012): e32818.

How to cite this article: Nexio, Grace. "Impact of Hydroxyapatite Nanoparticle Shape on Zebrafish Exposure Model Embryonic Development." *J Morphol Anat* 8 (2024): 351.