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Description
The time-space fractional diffusion-wave equation represents a 

fascinating and complex area of mathematical physics, capturing phenomena 
that standard integer-order models cannot adequately describe. This article 
delves into the concepts, significance, and applications of this equation without 
relying on the explicit use of equations or pointwise representations. Fractional 
calculus extends the traditional definitions of integrals and derivatives to non-
integer (fractional) orders. This extension allows for a more comprehensive 
description of various physical processes, particularly those exhibiting 
anomalous diffusion or non-local behavior [1]. Unlike classical calculus, which 
is limited to integer-order differentiation and integration, fractional calculus 
introduces operators that can capture memory and hereditary properties of 
materials and processes.

In classical models, diffusion and wave equations describe the behavior 
of physical systems over time. The diffusion equation models processes such 
as heat conduction, where particles spread out over time, while the wave 
equation describes oscillatory phenomena like sound or light waves. However, 
these classical models assume a uniform, homogenous medium and typically 
do not account for complex, irregular structures or media with memory effects. 
The fractional diffusion-wave equation generalizes these classical models by 
incorporating fractional derivatives in both time and space. This generalization 
is crucial for modeling anomalous diffusion, where the rate of diffusion is not 
constant over time or space, and for capturing wave-like behavior in complex, 
heterogeneous media. 

Fractional derivatives can be interpreted in various ways, leading to 
different formulations of the fractional diffusion-wave equation. The most 
common definitions include the Riemann-Liouville, Caputo, and Grunwald-
Letnikov derivatives. These definitions differ in their treatment of initial 
conditions and their applicability to different types of problems. This definition 
is often used in theoretical studies due to its straightforward mathematical 
properties. However, it requires fractional initial conditions, which can be 
challenging to interpret physically. The Caputo derivative is more commonly 
used in physical applications because it allows for integer-order initial 
conditions, making it easier to incorporate real-world data into models. This 
definition provides a numerical approach to fractional differentiation, making 
it useful for computational purposes [2].

In many physical, biological, and financial systems, the diffusion 
process deviates from the classical Brownian motion. Examples include the 
transport of pollutants in groundwater, the movement of biological cells, and 
the dynamics of financial markets. The fractional diffusion-wave equation 
can capture these anomalous diffusion behaviors, which are characterized 
by non-linear scaling laws. Many materials and processes exhibit memory 
effects, where the current state depends on the entire history of the system. 
This is seen in viscoelastic materials, where stress and strain are related 

through a history-dependent relationship. Fractional calculus provides a 
natural framework for incorporating these memory effects. Real-world media 
are often heterogeneous and exhibit fractal-like structures. Classical models 
assume homogeneity and fail to capture the complexity of such media. The 
time-space fractional diffusion-wave equation can model the transport and 
wave propagation in heterogeneous and fractal media.

In physics, it is used to model anomalous transport phenomena in 
disordered systems, such as the movement of particles in porous media or 
turbulent flows. In engineering, fractional models are applied to describe the 
behavior of viscoelastic materials and to design systems with memory, such 
as control systems in robotics and aerospace engineering. Biological systems 
often exhibit non-standard diffusion behaviors. For example, the movement of 
proteins within cells or the spread of diseases can be better understood using 
fractional models. Finance, fractional calculus helps model the dynamics of 
financial markets, capturing the heavy tails and long-range dependencies 
observed in asset returns. In geophysics, the fractional diffusion-wave 
equation models the propagation of seismic waves through the Earth's 
heterogeneous crust, aiding in the understanding of earthquake dynamics 
and resource exploration [3].

These methods provide a more flexible framework for handling complex 
geometries and boundary conditions. They are widely used in engineering 
applications but require sophisticated meshing techniques. Spectral methods 
leverage the properties of orthogonal functions to approximate the solution. 
They are highly accurate for smooth problems but can be computationally 
expensive. These methods use probabilistic approaches to approximate 
the solution of fractional differential equations. They are particularly useful 
for high-dimensional problems and systems with random inputs. These 
advancements, numerical methods for fractional differential equations remain 
an active area of research, with ongoing efforts to improve their accuracy, 
efficiency, and applicability to real-world problems.

The time-space fractional diffusion-wave equation represents a powerful 
and versatile tool for modeling complex physical phenomena. By incorporating 
fractional derivatives, it captures the intricacies of anomalous diffusion, 
memory effects, and heterogeneous media, which classical models cannot 
adequately describe. The broad range of applications in physics, engineering, 
biology, finance, and geophysics highlights the equation's significance and 
utility [4,5]. As numerical methods continue to evolve, the ability to solve the 
time-space fractional diffusion-wave equation will improve, enabling more 
accurate and efficient simulations of complex systems. This progress will 
undoubtedly lead to new insights and advancements across various scientific 
and engineering disciplines, solidifying the importance of fractional calculus 
in modern mathematical modeling.
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