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Introduction 
Nonextensive statistical mechanics is one of the contemporary 

pillars of physics which was formulated in the year 1988 in the famous 
Journal of Statistical Physics known to be as “Possible generalization of 
the Boltzmann-Gibbs statistics” [1]. This new era of statistical mechanics 
is being used to classify several kinds of entropy which exists in the 
system, to calculate it and to find the possibility of its reduction inside 
the system to some extent. This branch extends the empire of Statistical 
Mechanics while validating its applicability and its interconnectivity 
between metaphysics, mesoscopic physics and macroscopic physics. 
This branch is based upon the theory of probabilities i.e., CLT (Central 
Limit Theorem) [1]. Based upon the CLT the Fermi-Dirac distribution 
function with an introduction of the Tsallis factor q [1-3] is given by 
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The effective electron concentration has been calculated by 
the integral of the product of the distribution function along with 
the density of states of the electron gas forming a q-exponential 
integral. The density of states has been formulated by considering a 
sphere of volume 

34 r
3
π  which is known to be as the momentum 

sphere. Subsequently, the average energy of the electron gas also 
yields in the form of a q-exponential integral which was analyzed by 
Tsallis and Brigatti [2]. Solving the two simultaneous q-exponential 
integrals conditionally by using Binomial expansion, integration by 
substitution and assuming conditions within the limits of the integral 
being formulated with respect to the cold temperature values and the 
hot temperature values accordingly yields us the value of the average 
energy of the electron gas inside the conductor which should be 60% 
to that of the Fermi energy [4,5] value at q=1 (standard behavior). The 
average velocity of the electron gas inside the conductor exceeding the 
relativistic speed limit for lower temperature values and for the values 
of q residing at the regions of subextensivity [3] and superextensivity 

[3] has been shown in the curve plotted between the root mean square
velocity of the electron gas and the Tsallis factor.

The electrical conductivity of the metallic wire was calculated by 
the Drude’s equation of electrical conductivity given by the equation 

2ne
m

τ  [6,7] which can be further simplified in the terms of drift velocity 

and mean-free path length to be as 2( ) / ( )dne L mv [6,7] where the 
drift velocity is the average velocity acquired by the electrons with a 
subjection to an external excitation field (electric field). The variation 
of the electrical conductivity with respect to the Tsallis factor pertain 
the inverse relation existing between the electrical conductivity and the 
average velocity of the electron gas inside the conductor. Diminishment 
of the non-linearity errors have been found in the curve plotted between 
the electrical conductivity and temperature. The paper also recites the 
significance of this theory while building a new scope in the area of 
superconductivity. This has been explained by the persistence of a 
signal (information) inside a conductor at lower values of temperature. 
The paper also accounts with an increment or decrement of entropy 
within the system according to the regions of subextensivity and 
superextensivity. As, we know that the Lyapunov exponent diminishes 
in a non-extensive domain as the thermodynamic limit approaches to 
infinity [1-3] in an ergodic system [1-3]. The molecular chaos theory 
[1-4] is applicable to this case because a meniscus amount of scattering 
occurs due to the defects present in the lattice at the lower temperature 
values. Weak chaos of the molecules does occur along with the long 
range interactions of the colder ions which are generated due to a 
temperature residing across to the absolute zero.
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Abstract
The paper emphasizes an approach to solve complex q-exponential integrals by an implication of Binomial 

expansion along with some specific conditions on the integral limits and sets a relation between the limits which were 
used such as the maximum energy of the electrons and the chemical potential. The integral results which yielded 
the average energy and the effective electron concentration which proved out to be essential in order to calculate 
the average velocity of the electrons and the electrical conductivity of a metallic wire while taking consideration of 
the Drude’s model. The dependency on temperature of these parameters with the variation of Tsallis factor renders 
anomalous results depicting the Nonextensive Critical Temperature value to be 20 K and its importance has been 
mentioned in this paper along with the dependency of these parameters on certain regions consisting of Tsallis factor 
which follows subextensivity and superextensivity and infers a point known to be as Maximum Entropy Limiting 
Factor. 
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The above expression of the density of states [5,6,8] is going to be 
used in calculating the parameters which are being mentioned above. 

Effective Carrier Concentration
The effective carrier concentration is the total number of carriers 

(electrons in a metal) residing inside the conductor. As, we know that 
it can be calculated by the integration of the product of the density 
of states along with the distribution function of the carriers [6,8] as 
follows: 

( ) ( ) ( ) g  fn ε = ε ε∫                                              (7)

The distribution function determines the probability of occupancy 
and the vacancy of the carriers within that total number of available 
states [6,8] 

The Fermi-Dirac distribution function has been taken into 
consideration since we are dealing with a group of fermions inside the 
vicinity of the conductor known to be as the electron cloud or electron 
gas. With an introduction of the Tsallis Factor ‘q’ the distribution 
function becomes to be as [9]
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Equation (8) can be expressed in the terms of probability as being 
mentioned previously as 
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                                       (9)

Where nr is the number of carriers acquiring the chemical potential 
and intending to reach the maximum energy level, n is the total number 
of carriers available in the non extensive domain which is said to be 
fixed [2,3] ε is the energy associated with the particles which they are 
going to acquire in order to surpass the, chemical potential µ and ‘q’ is 
the Tsallis entropy factor.

Therefore,
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                                           (10)
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by using equation (6) and 
3
24 2A mπ= [8] obtained in equation (6).

Subsequent deduction of equation (9) becomes to be as –
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Solving integrals like 
( ) ( )
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2

1
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−

ε ε
+ − β ε − +  

∫ are quite 

difficult. Henceforth, we need to perform certain substitutions, 
assumptions and need to perform Binomial Expansion.

Substituting for unity we get 

Calculation of Density of States
The density of states is said to be as the number of possible states 

which can occupied by the electron per unit volume of the space 
which is available in the system [6,8]. This can be calculated by the 
consideration of a momentum sphere which is three dimensional 

and contains a volume 
34 r

3
π  in the three dimensional space [6,8]. 

The electron cloud can fit inside the sphere in any manner and even 
occupying the same volume as that of the momentum sphere of radius 
‘k’ as shown in Figure 1. 

The above concentric circles depict the three dimensional 
momentum sphere by which we are ought to calculate the density of 
states or the number of available states which can be occupied by the 
carriers of the conductor [6,8].

In this context it is the volume of the sphere inside which the total 
number of the carriers of the conductor can be fitted [6,8]

As, we know that the volume of the sphere is given by
34 r

3
π . 

Therefore, we can proclaim the total number of available states to be as
34 r 

3
V π

=                                                     (1)

2 4 d dV π= ρ ρ
                                            (2)

(Rate of change of volume yields surface area which is the density 
of states of the depicted sphere).

d =hdkρ
                      (3)

(Rate of change of momentum in the equation = khρ




Using equations (1), (2) and (3) we get

( ) 2 2   d4 k kg d hε ε π=
 

                                             (4)

We know that
2 2h k

2m
ε =



. Therefore, m k  
h

√ 2 ε
=
 and kd



 is calculated 

accordingly in equation (5)
( )1
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−

=                   (5)

putting equation (5) in (4) substituting the values of 2k


and kd


 we get 

( )
3 1
2 2  4 2g mε π ε=                                           (6)

2. Calculation of Density of States

The density of states is said to be as the number of possible states which can occupied by the 

electron per unit volume of the space which is available in the system [4], [5]. This can be 

calculated by the consideration of a momentum sphere which is three dimensional and contains a 

volume 4 r3

3
in the three dimensional space [4], [5]. The electron cloud can fit inside the sphere 

in any manner and even occupying the same volume as that of the momentum sphere of radius 

‘k’ as shown below-

py

px

pz

Fig.1. Concentric circles depicting a momentum sphere

The above concentric circles depict the three dimensional momentum sphere by which we are 

ought to calculate the density of states or the number of available states which can be occupied 

by the carriers of the conductor [4], [5].

Figure 1: Concentric circles depicting a momentum sphere.
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(In order to make the numerator and the denominator do consist 
of equal terms for the binomial expansion).

Let ε-µ=x                                               (15)

Calculating the rate of change of the variables on both the respective 
sides we get

dε=dx                                                     (16) 

The equation becomes 
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Expanding the two expressions ( )
1
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q 2
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−
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Binomial Expansion by assuming two conditions 

1. (q-1) βx << 1
x 1
µ

<<

By the Binomial expansion of the terms ( )
q 2
q 11 q 1 x
−
−+ − β   and ( )

1
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we obtain the expression to be as 
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Successive integration by substitution we get an expression to be as
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Applying the condition numbered to be as 2 on the equation (19) 
we get εm=2µ and as a result of this we get new limits to our solution 
of the integral which is highly sophisticated to be (-µ) to µ. The final 
expression we get to be 
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Average Energy of the Electrons
The average energy is the integration of the product of the total 

energy along with the effective carrier concentration [5]. A similar 
type of solution can be obtained for the average energy which can be 
calculated by the equation [5]

( )
m

avg
0

n d
ε

ε ε ε ε=∫                    (21)

Using the Nonextensive Fermi-Dirac distribution function which 
is being mentioned in the section above 

Therefore, similar to that of the previous section the distribution 
function can be expressed in terms of probability as follows [6]
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Incorporating the logic of equation (1) along with equation (22) in 
equation (21) we get an expression to be as
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Substituting the value of  nr in ( ) r
N.E
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=ε  we get
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By using the analogy of equation (6) in order to put the value of 
3
2 4 2A m=

Subsequent deduction of equation (24) becomes to be as 
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Similar to that section of the calculation of the effective 

carrier concentration which yielded in such complex integrals like 

( ) ( )
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−

ε
ε
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∫ are very difficult to solve and require 

certain substitutions, assumptions and binomially expanding the 
power tailed expression of the denominator part.

Subsequent substitution for unity in order to make the numerator 
and the denominator do consist of equal terms for the binomial 
expansion.

Let ε-µ=x                                                 (26)

Calculating the rate of change of the variables on both the respective 
sides we get

dε=dx                                                   (27) 

The equation becomes 
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Similar expansion of the two expressions ( )
3
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−+ − β    

by Binomial Expansion with the assumption of two conditions 

1. (q-1) βx << 1
x 1
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<<

By the Binomial expansion of the terms ( )
q 2
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Successive integration by substitution we get an expression to be as
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Applying the condition numbered to be 2 on the equation (30) we 
get m  2µε =  and as a result of this we get new limits to our solution 
of the integral which is highly sophisticated to be (-µ) to µ. The final 
expression we get to be as
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Now dividing equation (31) by equation (20) we get an expression
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Average Velocity
The average velocity of the electrons is being calculated in order to 

find the electrical conductivity of the metallic wire. 

We know that [7,8]
2

avg
avg

mv
 

2
=ε                                                               (34)

Further deduction in order to get an expression for vavg we get an 
expression to be as [7,8]

avg
avg

2
v

m
ε

=                     (35)

Incorporating equation (32) in the equation (35) we yield the value 
of the average velocity to be as
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2 2
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=
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Where χ is same as that of the equation (33).

Electrical Conductivity
The electrical conductivity of the metallic wire can be defined as 

the ratio of the current density to that of the applied external electric 
field [6,7]. The versatility of the Drude’s model in order to unravel the 
occult nature of the electron cloud (electron gas) has been taken into 
consideration and by using the Drude’s equation [6,7] to be as 

2ne
m

σ τ
=                                                     (37) 

The equation above can be deduced further by substituting the 
value of the relaxation time [6,7] which is given to be as 

avg 

L
v

τ =                                                 (38)

2

avg

ne L
mv

σ =                                                   (39)

Incorporating equation (36) in the equation (39) we get the yield 
which we were intended to find that is the electrical conductivity to be as 

( ) ( ) ( ) ( ) ( )
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2 2

2

4µm 6µm  
2 2q x 3 x log 2 2q x 3 x 2 2q x 3 x2 2q x 3 x 4q µ 6 µ   q 2 1

µ 2q 3 2µ 2q 3 2µ 2q 3

σ = −
 − β + β
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  (40)

Where χ is same as that of the equation (33).

Results and Discussions
Figure 2 infers that when ‘q’=0 there is an increment in the 

average energy of the electrons starting from (-5.54)× 10-6J at 20 K 
which means that when there is no entropy factor which is required 
to regulate the entropy of a system, the entropy of a system tends to 
increase by energizing the electrons which possessed a minimum 
amount of energy at lower temperature values. It also renders us the 
physical significance of the non-existence of any regulation in the 
entropy of the system. But, actually there exists a regulation in the 
entropy which is present in a considerable amount because the region 
‘q’<1 is known to be as the region of superextensivity [2]. When ‘q’=1 
the system follows extensivity and is subjected to tremendous amount 
of disturbances and as a result it yields an average value 60% to that of 
the Fermi energy (Chemical Potential) [5]. The temperature at which 
the average energy tends to increase is quite low and it is non-feasible 
in nature but since, we are using a regulatory parameter to decrease the 
entropy of the system several kinds of such anomalous characteristic 
can be observed. This low anomalous temperature value is known to 
be as ‘Non–extensive Transition Temperature’. We are able to observe 
that for the other values of q i.e., when ‘q’=0.25, ‘q’=0.6 and even when 
‘q’=1 (follows extensive characteristics) [2,3] the electrons do posses a 

 Figure 2: Average energy of the electrons when plotted against Temperature.
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value of the average energy i.e., which is greater than that when ‘q’ =0. 
This is because we are traversing towards the direction of the region of 
‘subextensivity’ i.e., when ‘q’>1 [3]. The only plots which are visible to us 
are that of ‘q’=0 (superextensivity), ‘q’=2 and ‘q’ =1.15(subextensivity). 
The entropy of a system is decreased at a larger extent in the region 
of subextensivity as compared to the region of superextensivity that is 
why we observe an increasing value of the average energy. That is why 
the diamond structure appears earlier as compared to the blue line at 
the non-extensive transition temperature.

According to the Figure 3 depicted above the average velocity (drift 
velocity) [10,11] of the electrons is higher for ‘q’=0.25 and ‘q’=2 that 
completely specifies superextensivity [3] and subextensivity [3]. The 
speed of light or the relativistic limit is surpassed at these values of 
‘q’ at lower value of the temperatures by the regulation of the entropy 
diminishes at a higher extent at a higher value of ‘q’ i.e ‘q’=2 which 
happens due the entropy factor ‘q’ regulating upon the electrons of the 
system making them move freely with very lesser amount of scattering 
phenomenon which is due to the defects present in the lattice structure 
of the metal to occur and as a result increases the phase velocity of 
the electrons. The increment of the phase velocity of the carriers is due 
to the lesser interaction of it with its nearby electrons or ions which 
can generate a certain amount of potential. If any such chaos occurs 
it would be weaker (weak chaos) [1] and the Lyapunov exponent 
vanishes relaxation time τ decreases as a result [1,3,9]. This is due to 
the regulatory action of the Tsallis entropy factor ‘q’ acting upon the 
distribution function of the class of electrons present in the domain 
and each and every one of them gets affected. As, a result the electron 
does posses an average velocity nearer to the relativistic limit. The 
greater the value of ‘q’ more the inhibition of an electron takes place 
making them to scatter and collide weakly. The meniscus amount of the 
scattered electrons do posses tremendous amount of acquired energy 
from ‘q’ which has altered its phase velocity significantly interacts 
with the group of non scattered electrons which already does possess 
a phase velocity approximate to the relativistic speed limit. This weak 
interaction inhibits some feeble but sumptuous amount of energy to the 
non scattered group of electrons. When there is the existence of cold 
temperature values then there would not be that amount of external 
disturbances which would resist the path of the non scattered group of 

electrons. An infinitesimal part of the group of non scattered electrons 
are able to surpass within the weak chaos [1,2,3,6] along the weak long 
ranged ionic potential interactions and acquire a tremendous amount 
of energy in order to overcome the relativistic limit and travel with 
a speed faster than the speed of light as shown in the Figure 3. For 
e.g., – For ‘q’=2 (subextensive) the value of vavg=13.1 × 109 m/sec and 
‘q’=0.25 (superextesnive) the value of vavg=11.6 × 109 m/sec. When ‘q’ 
approaches 1 then the average velocity lies within the vicinity of the 
relativistic limit (extensivity).

The electrical conductivity are greatly dependent upon the effective 
concentration of the carriers, mean free path length and is inversely 
dependent upon the inertial mass of the carriers and average velocity 
and is obtained in the order of 106 mho/m which is similar to the order 
of the electrical conductivity obtained in the case of a metallic copper 
wire in an extensive domain (theoretical and experimental) [Lorenz 
number] For all the values of ‘q’ conductivity phenomenon occurs at the 
non-extensive transition temperature that is 20 K and its significance 
has been mentioned for both the cases in the above figures. A parabolic 
increase in the conductivity is obtained for ‘q’=0.6 which resides in the 
region of superextensivity depicting non linearity errors present in the 
system and also the lesser value of the average velocity obtained in this 
case previously. Perfect straight lines are obtained for the case when 
‘q’=2 (subextensive) and ‘q’=0.25 (subextensive) which depicts freedom 
from non linearity errors and they exhibit a lesser value of conductivity 
as compared as compared to ‘q’=0.6 (average velocity is inversely 
proportional to the electrical conductivity). For ‘q’=1 (extensive) an 
asymptotic structure is obtained which cannot be differentiated in the 
Figure 4 because the value of the electrical conductivity is very low 
and negligible for the temperature values residing within the vicinity 
of non-extensive transition temperature. The electrical conductivity 
increases or runs proportionally with respect to the higher temperature 
values because the average velocity decreases with respect to the higher 
temperature values as shown in the Figure 5 and they are inversely 
proportional to each other.

Conclusion
The relativistic speed limit is getting violated for the Tsallis factors 

residing within the vicinity of subextensivity (q>1) which is present 

Figure 3: Average velocity of the electrons when plotted against Temperature.
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in a greater amount than that for the Tsallis factor residing within 
the vicinity of superextensivity (q<1) and the very reason has already 
been mentioned in the results and discussions part only for the cold 
temperature values. The average velocity is very lesser when compared 
with the relativistic speed in the extensive regime i.e., when q=1 as 
shown in the Figure 5. The relativistic speed limit has been exceeded 
only in the case of the non-extensive transition temperature and is 
within the limit for the higher values of temperature except for some 
other cold temperature value that is 50 K and the reason behind that 
has been already mentioned in the results and discussions.

The Maximum Entropy Limiting Factor yields vavg=0 and the 
very reason is when ‘q’ =1.5 i.e., the average velocity of the electrons 
becomes zero as shown in the Figure 5 because at this particular Tsallis 
factor the entropy is reduced to a complete extent and the previous 
value to this value resides in the region of extensivity which has lower 

values of the average velocity due to a large amount of disturbances 
present in the system at that region depending on the dimension of 
the system and the inner metric properties. Due to a sudden change 
in the entropy from a higher amount to a lower amount the motion of 
the non-scattered group of electrons are nullified at a point which is 
the entry point for the subextensive region. (For e.g., Consider a ray of 
light traversing from a medium of higher refractive index to that of a 
lower refractive index and the Maximum Entropy limiting factor is the 
interface between the two mediums).

Figure 6 pertains that the highest peak occurs at a higher 
temperature value i.e., at the room temperature value of 298 K at ‘q’=0.6 
and the inference is the same as that of the results and discussions 
part for Figure 4. The electrical conductivity runs asymptotically 
across a particulate factor of Tsallis which can be referred to be as the 

Figure 5: Average Velocity when plotted against the Tsallis factor.

Figure 4: Electrical Conductivity of metals when plotted against Temperature.
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“Maximum Limiting Entropy Factor” yielding infinite conductance 
when ‘q’=1.5.

From the Figures 5 and 6, we can infer that any value of ‘q’ lying 
between the values of 0 to 0.6 are known to be as the Superextensive 
entropy factors [2] which can reduce entropy of a system to a certain 
extent i.e., 0 ≤ q ≤ 0.6.

Any random value of ‘q’ lying between the values of 0.6 to 1.5 are 
known to be as the Extensive entropy factors which cannot reduce 
entropy to any extent depending on the dimensional size along with 
the metric property of the system i.e., 0.6 ≤ q ≤ 1.5. Any random 
value of ‘q’ residing in the vicinity greater than ‘q’ =1.5 are known to 
be as the Subextensive entropy factor which can provide a complete 
extermination of entropy in a system under consideration i.e q ≥ 1.5.

The average velocity of the electrons becomes equivalent to the 
phase velocity and exceeds the relativistic speed limit by the regulatory 
phenomenon of the Tsallis entropy factor in the distribution function 
of this class of Fermions. The electrical conductivity of the metallic 
copper wire (copper has been considered during the simulation 
process) increases with an increase of temperature in a non extensive 
domain which can provide a good contrast for an extensive domain.

When the value of ‘q’=1.5 yields an infinite value of conductivity 
and is known to be as the “Maximum Entropy Limiting Factor” 
exhibiting an asymptotic nature in the plot which is being depicted in 
Figure 6. The temperature value of 20 Kelvin is known to be as the 
“Non-Extensive Transition Temperature” which is the minimum cold 
value of temperature at which a system can be freed from entropy on a 
partial or complete basis.

One of the epitome of this very theory are that the persistence of 
any kind of information inside a copper wire for an extended range of 
temperatures starting from the non-extensive transition temperature 
to the normal room temperature by a certain mathematical modeling 
based upon the Tsallis entropy factor ‘q’ regardless of the topology of 
the system for transmission purposes such as for the internet purposes. 
Signals which can be unit step, ramp or delta are going to flow with an 
ease in an extremely colder region without getting dissipated because 

of being regulated by ‘q’ accordingly regardless of the metric properties 
of the system and the size in the context of information theory.
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