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Introduction 
The starting point in the present analysis is the notion of 

vertex operators at the quantum level and the associated Faddeev-
Zamolodchikov algebra [1]. Inspired by these ideas, we propose a 
similar algebraic formulation to deal with classical integrable field 
theories on the infinite or semi-infinite line. It is worth noting that such 
ideas at the classical level were briefly discussed [2], but a systematic 
construction of classical vertex operators, the generating function 
of the local integrals of motion as well as a construction of the time 
component of the Lax pair in terms of the classical vertex operators was 
not really demonstrated. We should stress that one of the key points of 
the present analysis is the identification of the auxiliary function of the 
auxiliary linear problem as the classical version of the vertex operator. 
Moreover, particular emphasis in the present investigation is given 
in integrable systems in the presence of point like defects as well as 
in the presence of non-trivial boundary conditions. Recall that vertex 
operators Φ at the quantum level satisfy the Faddeev-Zamolodchikov 
algebra [1].

12 1 2 1 2 2 2 2 1 1S ( - ) ( ) ( ) = ( ) ( )1λ λ Φ λ Φ λ Φ λ Φ λ               (1)

where S is the physical scattering matrix S ∈ End( ⊗ ), solution of 
the Yang-Baxter equation, and Φ is the quantum vertex operator which 
is an –dimensional vector with elements being realizations of the 
underlying affine quantum algebra. Here we are going to formulate a 
classical analogue of the latter quantum objects Φ as well as the algebra 
(1). This will be basically achieved by means of certain vectors –tensor 
products of which are eigenvectors of the classical r-matrix– suitably 
implemented at the ends of the system.

The paper is organized as follows: in the next section we briefly 
review the auxiliary linear problem and also recall the notion of 
the classical monodromy matrix together with the corresponding 
classical quadratic algebra. Then based on these ideas we introduce the 
classical analogue of the vertex operator, which coincides essentially 
with the auxiliary function of the auxiliary linear problem, which in 
turn satisfies a classical version of the vertex algebra (1). We then 
introduce the generating function of the integrals of motion in terms 
of classical vertex operators. The extracted charges are in involution by 
construction due to the fact that the classical vertex operators satisfy a 
quadratic vertex algebra. Based on the classical vertex algebra and the 
Hamiltonian equations of motion we derive the time components of 
the Lax pairs. This setting is generalized for in systems the presence 
if point like defects as well as for systems on the half line. In section 

3 we exemplify our construction using as a paradigm a whole class 
of systems associated to the classical Yangian. Explicit expressions of 
the generating functions of the integrals of motion as well as the time 
components of the Lax pairs are provided.

The General Setting
The starting point in our analysis will be the auxiliary linear 

problem, consisting of the Lax pair ,  and the pair of differential 
equations (see ref. [3] and references there in): 
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,  are in general  ×  matrices with entries being functions of 
x, t and depending also on a spectral parameter. The main proposition 
of the present investigation is that the auxiliary vector functions Ψ are 
essentially classical variants of the vertex operators, and they satisfy a 
classical version of the vertex (Faddeev-Zamolodvhikov) algebra (1). 
Let us recall the classical monodromy matrix, which will be an essential 
object in our formulation

{ }( , , ; ) exp ( , ; )
y

x
T x y t dx x t′ ′λ = λ∫                  (3)

is a solution of the first of the equations (2). Moreover, the monodromy 
matrix satisfies the quadratic classical algebra

{ }1 1 2 2 12 1 2 1 2 2( ), ( ) [ ( ), 1( ) ( )]T T r T Tλ λ = λ − λ λ λ                  (4)

where as usual we introduce the notation: T1=T ⊗ I, T2=I ⊗ T and 
so on. The classical r-matrix satisfies the classical Yang-Baxter 
equation [4]

[ ]12 1 2 13 1 23 2 13 1 23 2( ), ( ) ( ) [ ( ) ( )] 0r r r r rλ − λ λ + λ + λ + λ =               (5)
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Recall also the definitions for Ψ and Ψ* and formulate:
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where we define
*

2 1 12 1( , ; , ) ( ,0, ; ) ( ) ( , , ; )x t L t r x L tµ µλ = Ψ λ λ − Ψ − λ

                   (15)

We wish to consider ln() as the generating function of the local 
integrals of motion as well as the zero curvature condition arising as a 
compatibility condition of eqn. (2)

( , ; ) ( , ; ) [ ( , ; ), ( , ; )] 0x t x t x t x t′ λ − λ + λ λ =                   (16)

the “prime” denotes derivation with respect to x, and the “dot” denotes 
derivation with respect to t. Then

[ ]

* 2
1 1 2

2 2

( , ; , ){ln( ( ,0, ; ) (0, , ; ), ( , ; )}

( , ; , ), ( , ; )

x tL t L t x t
x

x t x t

µµ

µ µ

∂ λ
Ψ λ Ψ − λ = +

∂
λ



 
 (17)

Where
1 *

2 1 12 1( , ; , ) ( ) ( , , ; ) ( ) ( , , ; )x t L x t r x L tµ µ−λ = λ Ψ λ λ − Ψ − λ   (18) 

Expansion of  in powers of λ−1 provides the hierarchy of 
-operators associated to each integral of motion.

Defects

The approach described above may be easily generalized in the 
presence of local integrable defects (see also refs. e.g., [6-12] for recent 
results in this context). In fact, the relevant object in this case, i.e., the 
generating function of the integrals of motion would be

( ) ( )*
0 0 0( , , ; ) , ; ( , , ; )L x t x t x L t+ −λ = Ψ λ λ Ψ − λ                    (19) 

the plus and minus superscripts in the expression above refer to the left 
right bulk theories, the defect matrix L is of the generic form

( )
. 1

( )
N

ij ij
i j

e
=

λ = λ∑                       (20)

eij are in general  ×  matrices such that: (eij )kl=δik δjl.  satisfies 
the quadratic algebra L satisfies the quadratic algebra

( ) ( ) ( ) ( )1 2 12 1 2 1 2{ , } ( ),2 2 2 2λ λ =  λ − λ λ λ  � �   r                  (21)

Exploiting the algebraic relations between the vertices (8) as well as 
the ones regarding the defect matrix (21) we conclude as expected that 
D provides the charges in involution

{ }1 2( ), ( ) 0λ λ =                       (22)

i.e., the involution of the charges derived via the expansion of the 
generating function D is guaranteed by construction.

We shall derive below the -operator associated to the defect point 
computed from the left and from the right in terms of the classical 
vertex operators. The -operators at x≠x 0 coincide with the bulk 
expressions for the left and right theories, and we do not rederive them 
here for brevity. To derive the -operator on the defect point we recall 
the zero curvature condition at x =x0 [8]

0
0 0 0 0

( , ; ) ( , ; ) ( , ; ) ( , ; ) ( , ; )x t x t x t x t x t
t

+ −∂ λ
= λ λ − λ λ

∂
 

    �       (23) 

Then using the algebraic relations (21) we may formulate on the 
defect point:

We shall be mainly interested henceforth in integrable models on 
the full line or on the semi-infinite line. We shall begin our derivation 
with integrable systems on the full line considering the interval [−L, L]. 
We define the following basic objects

( , , ; ) ( , , ; )x L t T x L t VΨ − λ = − λ    

( , , ; ) * ( , , ; )L x t V T x L tΨ λ = − λ                        (6)

where V, V∗ are N row and column vectors respectively such that:
* * * *

1 2 12 1 2( ) ( )V V r f V Vλ = λ ,  12 1 2 1 2( ) ( )r VV f VVλ = λ                   (7)

f (λ) a function of the spectral parameter depending on the choice of 
the r-matrix. Then it is straightforward to show using the algebraic 
relation (4) and the definitions (6), (7):

{ }1 1 2 2 12 1 2 1 1 2 2( ), ( ) ( ) ( ) ( )Ψ λ Ψ λ = λ − λ Ψ λ Ψ λr

{ }* * * *
1 1 2 2 1 1 2 2 12 1 2), ( ) ( ) ( ) ( )Ψ (λ Ψ λ = Ψ λ Ψ λ λ − λr                      (8) 

(see also similar relations at the classical level in ref. [2]), we define the 
“shifted” classical r-matrix: 

( ) ( ) ( )r fλ = λ − λr                     (9)

Note that we consider here a quite generic classical r-matrix: r ∈  
End ( ⊗ ). In the last section we are going to restrict our attention 
to the gl classical Yangian. 

Keeping in mind the latter relations we can introduce the 
fundamental quantity

*( , , ; ) ( ,0, ; ) (0, , ; )L L t L t L t− λ = Ψ λ Ψ − λ                   (10)

The latter (10) provides the charges in involution of the system 
under consideration, indeed it may shown via (8) that

1 2 2 2{ ( ), ( )} 0λ λ =                    (11) 

Expansion of the ln() clearly provides the local charges in 
involution (local integrals of motion). Later in the text we are going to 
consider a class of integrable models associated to classical Yangians 
[5], with typical examples e.g., the  generalized NLS and the  Landau-
Lifshitz models. Employing the formulation described above we may 
extract the hierarchy of charges as in the inverse scattering process. 
The main advantage here is the fact that the auxiliary function may be 
thought of as a classical vertex operator satisfying the classical algebras 
(8), and thus involution of the charges is by construction guaranteed. 
Moreover, due to the fact that the classical vertex operators are 
immediately associated to the monodromy matrix facilitates technically 
the derivation of the desired quantities. The time depended equation 
of the pair (2) is not really used as opposed to the inverse scattering 
methodology where the time dependent equation is exploited in order 
to prove the conservation of the extracted local charges. In fact, the 
time components of the Lax pair associated to each integral of motion 
can be also derived in terms the classical vertex operators.

Indeed, we shall derive below the -operators in terms of the 
classical vertex operators exploiting the underlying algebra. Recall the 
fundamental Poisson commutator (see e.g., [3])

[ ]

12
1 2

12 2

( , ; , ){ ( , , ; ), ( , ; )}

( , ; , ), ( , ; ) , [ , ]

x tT A B t x t
x

x t x t x A B
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λ = +
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λ ∈



 
               (12)

where we define 

12 1 12 1( , ; , ) ( , , ; ) ( ) ( , , ; )x t T A x t r T x B tµ µ µλ = λ λ −                (13)
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Where ±
 ar e the time components of the Lax pair on the defect 

point computed from the left and right:

( ) ( )
( ) ( )

1 *
2 0 0 1 0 12 1 0 1 0

1 *
2 0 0 1 0 1 0 12 1 0

( , ; , ) ( , ; ) ( , , ; ) ( ) , ; , , ;

( , ; , ) ( , ; ) ( , , ; ) ( , ; ) , , ;

x t x t L x t r x t x L t

x t x t L x t x t r x L t

µ µ

µ µ

+ − + −

− − + −

λ = λ Ψ λ λ − λ Ψ − λ

λ = λ Ψ λ λ λ − Ψ − λ





�  

�  
 (25) 

Let us recall, as has been discussed in detail in ref. [8], that analyticity 
conditions imposed on the -operators around the defect point i.e.,

0 0( ) ( )x x± ± ±→                     (26)

lead to the necessary sewing conditions on the defect point. These 
are conditions that involve the left and right fields and their derivatives 
and the defect degrees of freedom. Due to these conditions one observes 
“jumps” of the fields and the derivative across the defect point. 

Integrable systems on the half line

We shall consider in this section the generalization of the 
aforementioned algebraic set-ting for integrable systems on the half 
line. Before we proceed with the mathematical setting in this case it will 
be instructive to recall the two distinct types of boundary conditions 
appearing in integrable theories associated to higher rank algebra i.e., glN.

In general, depending on the choice of boundary conditions the 
bulk physical behavior may be accordingly affected. In the frame of 
affine Toda field theories (ATFTs) the boundary conditions introduced 
in refs. [13,14] are related to the classical twisted Yangian [15], 
and force a soliton to reflect to an anti-soliton, hence the relevant 
appellation soliton non-preserving (SNP) boundary conditions. 
Naturally another possibility exists, that is boundary conditions that 
lead to the reflection of a soliton to itself. These boundary conditions 
are associated to classical reflection algebras [16,17] are known as 
soliton preserving (SP), and have been extensively investigated in the 
context of integrable quantum spin chains (see e.g., [18] and references 
therein). Although SP boundary conditions are the obvious ones in 
the framework of integrable lattice models they remained puzzling in 
the context of ATFTs until their thorough analysis in ref. [19]. On the 
other hand SNP boundary conditions were investigated through the 
Bethe ansatz formulation for the first time [20], whereas higher rank 
generalizations considered [21].

Let us now describe the algebraic setting associated to integrable 
systems on the semi-infinite line. Recall that the modified monodromy 
matrix for a system on the half line is given [16]

ˆ( ) ( ) ( ) ( )T K Tλ = λ λ λt                   (27)

where we define T̂  in the case one considers the twisted Yangian as:

ˆ( ) ( )tT UT Uλ = −λ                     (28)

U can be a diagonal or anti-diagonal matrix with particular form 
depending on the choice of the classical r-matrix. We shall later focus 
on the classical Yangian and consider U=antidiag (1, 1, . . . , 1). In the 
case one considers the reflection algebra T̂  is defined  [16]

1ˆ( ) ( )T T −λ = −λ                                    (29)

We shall focus henceforth on the twisted Yangian case mainly 
because this case has not been really explored in the context of 
classical continuum field theories such as the vector NLS models or the 
generalized Landau-Lifshitz model. In this case due to eqns. (27), (28) 
it may by easily shown that  satisfies

1 2 21 1 2 1 2 12

1 12 2 2 12 1

( ), ( )} ( ) ( ), ( ) ( ), ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

r r
r r

µ 1 2 2 2 1 2 1 2

1 1 2 2 1 1 2 1

λ = λ − λ λ λ − λ λ λ − λ
+ λ λ + λ λ − λ λ + λ λ
{t t t t t t

t t t t
 (30)

where we define in the SNP case (classical twisted Yangian)

2
1 12 1( ) ( )tr U r Uλ = λ                   (31)

K is a c-number solutions of the twisted Yangian (2.29),

21 1 2 1 2 12

1 12 2 2 12 1

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 0

r K K K K r
K r K K r K

1 2 2 2 1 2 1 2

1 1 2 2 1 1 2 1

λ − λ λ λ − λ λ λ − λ
+ λ λ + λ λ − λ λ + λ λ =

             (32)

where here notice that in the sl2 case the twisted Yangian and reflection 
algebras coincide. Henceforth we shall adopt the twisted Yangian for 
our computations, extra attention will be given to the gl, >2 case in 
this context. To the reflection algebra (SP boundary conditions) 12=r r  
although this case is equally interesting it involves various technical 
intricacies and will be left for future investigations. In addition to the 
classical vertex

Ψ (2.5) we also introduce 

ˆ ˆ ˆ( ) ( )VTΨ λ = λ                      (33)

Moreover, the following relations are required:

1 12 2 1 2

2 12 1 2 1

1 2 12 1 2

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ( ) ( )

V r V f VV

V r V f V V

VV r f VV

λ = λ

λ = λ

λ = λ

                    (34) 

Then in addition to (8) the following set of algebraic relations are 
also satisfied:

1 2 1 21 2

1 2 1 12 2

1 2 1 2 21

ˆ ˆ ˆ{ ( ), ( )} ( ) ( ) )
ˆ ˆ ˆ ˆ{ ( ), ( )} ( ) ( ) )
ˆ ˆ ˆ ˆ{ ( ), ( )} ( ) ( ) )

1 2 1 1 2 2

1 2 1 1 2 2

1 2 1 2 1 2

Ψ λ Ψ λ = Ψ λ λ + λ Ψ (λ

Ψ λ Ψ λ = Ψ λ λ + λ Ψ (λ

Ψ λ Ψ λ = Ψ λ Ψ λ (λ − λ

r

r

r

                  (35)

where the shifted r matrix is defined as

( ) ( )r f= λ − λr                    (36)

Define the generating function of the integrals of motion as:

ˆ( ) (0, , ; ) ( ) (0, , ; )L t K L tλ = Ψ − λ λ Ψ − λT                   (37)

Indeed taking into account the relations (8), (35) and (32) it is 
shown that

( ), ( )} 01 2λ λ ={T T                     (38) 

We may now derive the V-operator on the boundary point x=0 
(see also [22] for relevant results). The main aim is to formulate the 
following Poisson commutator taking into account the algebraic 
relations as well as the form of the zero curvature condition at x=0:

1 1 1 2

2
2 2

ˆ{ln( (0, , ; ) ( ) (0, , ; ) (0, ; )}

( , ; ) [ (0, ; ), (0, ; )]

L t K L t t

x t t t
x

µ

µ µ µ

Ψ − λ λ Ψ − λ =

∂ λ,
+ λ,

∂






  

                   (39)

where we define the boundary -operator at  x=0
1

2 1 1 12 1 1 12 1 1
ˆ ˆ ˆ ˆ( ) ( )( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))K r r Kµ µ µ−λ, = λ Ψ λ λ λ − Ψ λ + Ψ λ λ + λ Ψ λ T   (40)

Continuity conditions at x=0

(0) (0 )+→                    (41) 

lead to suitable boundary conditions on the fields and their derivatives 
(see detailed discussion [23]). Having introduced all the necessary 
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algebraic objects for classical integrable systems on the full and half 
line as well as in the presence of point-like defects we can use a class 
of models associated to the classical (twisted) Yangian r-matrix as a 
paradigm. Particular emphasis will be given on such models with 
boundary conditions related to higher rank algebras.

Paradigm: The Classical Yangian and Twisted Yangian
Having at our disposal the general algebraic setting in treating 

integrable systems via the classical version of the vertex algebra we may 
now consider as a paradigm a whole

, 1
( ) ij ji

i j
r e e

=

λ = ⊗
λ ∑
k 

                  (42)

We shall first consider the model on the full line and demonstrate 
the simplicity of obtaining the integrals of motion. Involution is 
guaranteed by construction via commutation relations (11). As already 
mentioned the fact that the classical vertex operator can be immediately 
obtained from the monodromy matrix provides an elegant way of 
expressing the classical vertex using the standard decomposition of the 
monodromy matrix [3]

(0, , ; )

* ( ,0, ; )

(0, , ; ) (1 (0, ; )) (1 ( , ; )),
( ,0, ; ) (1 ( , ; ) (1 (0, ;

z L t

z L t

T L t W t e F L t
T L t W L t e F t

− λ

λ

− λ = + λ + − λ

λ = + λ + λ))
              (43)

where
1

, ,
,

1 (1 ) ,j jj ij ij ij ij
j i j i j

Z e F W W W e F F e−

≠

Ζ = + = + = =∑ ∑ ∑            (44)

W and Z may be identified using the fact the monodromy matrix 
satisfies the first of the equations (2), and they of course depend on 
the choice of the model, i.e., the U-operator [3]. More precisely, 
substitution of the decomposition of the type (43) for T (x, y; λ) in the 
first of the pair of equations (2) leads to typical Ricatti equations for W 
[3]. Solving these one can identify W and Z.

We assume Schwartz boundary conditions at the end points x= 
± L, i.e., the fields and their derivatives disappear so that W (± L)=0. 
Introduce also the  dimensional column vector uk with unit on the kth 
position and zeros elsewhere, also ˆ t=k ku u . Also we choose to consider 
henceforth

* ˆu , uV V= =                     (45)

Then the fundamental quantities Ψ, Ψ* with the use of the identities:

, ˆ ˆ ˆ, u u u , u uij kl jk il ij k jk i k ij ik j i j ije e e eδ δ δ δ δ δ= = = =                (46)

become
(0, , ; )

( ,0, ; )*

(0, , ; ) (u (0, ; )u )

ˆ ˆ( ,0, ; ) (u (0, ; )u )
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j

z L t
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j

L t e W t

L t e F t

− λ

≠

λ

Ψ − λ = + λ

Ψ λ = + λ

∑

∑
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               (47)

Note that in general we could have used the standard inverse 
methodology to identify the rations

( )
( )

( )
( )

*

*,
1 1

Ψ Ψ
Ψ Ψ

j j
 where obviously and equivalently to (47)
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x t x t eλ = λ∑ �                  (49)
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j
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e e W x t
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≠

∂
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+

∑
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              (50)

which leads to the typical Ricatti type equations for Wj  already 
mentioned above 

( ) ( ) ( ) ( ) ( )
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k
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W W W
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j 1
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j
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x,t x,t x,t x

x

x,t x,t x,t

 

 

 

N
N

       (51)

Solution of the equations above leads to the identification of 
Z,Wj . The advantage here is the use of the decomposition of the 
monodromy matrix (43), which provides the simple formula below for 
the generating function of the integrals of motion:

ln( ( , , ; )) ( , , ; )L L t Z L L t− λ = − λ                   (52)

with apparent analyticity conditions at x=0, this will become more 
transparent when discussing such models in the presence of point-
like defects later in the text. It will be also instructive to derive the 
V-operator (18). Taking into account (18), (3.1), (3.6) we conclude that

( , ; , ) ( ( ) ( ) ( ) )j j j j ji
j ij

kx t e F e F W eµ
µ ≠

λ = + λ + λ λ
λ − ∑ ∑  � � � 



  (53) 

which coincides with the generic expression for  in the context of 
classical Yangian [3,8]. Substitution of the Wij and Z quantities on the 
expressions for the generating function and the V-operator provides 
explicit expressions at each order for a particular model under study 
(see e.g. [3,8] for explicit expressions).

Defects

The main aim in this subsection is to identify explicit expressions of 
the generating function and hence the local integrals of motion as well 
the time component of the Lax pair using the classical vertex operators 
in the presence of a local defect for the classical Yangian case.

Recall the expression for the generating function (19), it is then 
straightforward to rewrite it via (20), (47), as

ln( ( )) ( ) ( ) ln( , )λ λ λ λ+ −= + + 0 0 0Z L,x ,t; Z x ,-L,t; x t;N N               (54) 

the plus and minus superscripts in the expression above refer to the left 
right bulk theories, and define

( , ) ( ) + ( ) ( ) +

( ) ( ) ( ) ( ) ( )

F

W F W

λ λ λ λ

λ λ λ λ λ

+

− + −

≠

=

+

∑

∑ ∑

X 0 j j
j

j j i ij j
j j

x t;  

 

NN N N

N N N N
N

                           (55)

Similarly the time components of the Lax pair on the defect point 
(25), take the explicit expressions after substituting (42), (20), (47) in (25)

( )
1

1, , , ,
, j j i j i j j i ij j i li l j

j i j i j i j l

kX e W e F e F W eµ
µ

−
− + + −

≠ ≠

 
+ = + + + 

−  
∑ ∑ ∑ ∑    l

l Ne Ne N Ne N N N N
N

( )
1

, , , ,k
,

jj j i j i j ji i j i ik ik
j i j i j i j

kX e W e F e F W eµ
µ

−
− + + −

≠ ≠

 
− = + + + 

−  
∑ ∑ ∑ ∑    l

l NeN Nj N N N N N
N N

The expressions of the generating function and the defect 
V-operators coincide as expected with the ones of earlier works on 
models with underlying classical Yangian [8]. Explicit expressions 
associated e.g. to the NLS model and σ models in the presence of defects 
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can be found in ref. [8], and they are not repeated here for brevity. The 
interested reader however is referred to ref. [8] for more details.

The system on the half line

We shall now derive explicit expressions for any system associated 
to the classical twisted Yangian such as the vector NLS model or the 
isotropic Landau-Lifshitz model or principal chiral models. Note 
that a systematic study at the level of classical field theories is still 
missing although there are some preliminary results in ref. [24], but 
mainly focused on the discrete analogues of these models. This is in 
fact the first time that this problem is directly addressed at the level of 
continuum classical systems. Let us recall the generating function of 
the integrals of motion in this case given in (37), also in addition to the 
explicit expression for Ψ (47) one needs the expression for Ψ Indeed 
choosing to consider ˆ ˆV = u

 We obtain

( ) ( ) ( )ˆ 0, , ;
1

1

ˆ ˆˆ ˆ0, , ; 0, ;L tZ
jj

j
L t e u W t u−

≠

 
Ψ − = + 

 
∑ll lN

N
                 (56)

Where ( ) ( )Ŵ W ,ij ij=l -l  ( ) ( )Ŵ W ,ij ij=l -l  and we also define the 
conjugate

Index 1j j= − +N  Also, the c-number K-matrix can be 
generically expressed as K K e=∑ i,j i,ji,j

then the generating function 
becomes

( ) ( ) ( )
( )

ˆ

1 1
1,

ˆ ˆ .

Z

j j j ji ij j
j j j i

e

Y K K W K W W K W

+

≠ ≠ ≠ ≠

= + + +∑ ∑ ∑
( )=F l ll l

l

Z YN N

N N N NN N
N N N

 (57) 

Due to the generic expression for the boundary -operator (47), 
(56) and

( )
1

1 1
1 , 1

1

1,

ˆ ˆ0, ;

ˆ ˆ

l i l l i jl i ili j
l i i l j

jl
j l ij jl lj l li

l j j l i

kYt K K W e K W K W W e

kY K K W e K W K W W e

µ
µ

µ

−

≠ ≠ ≠

−

≠ ≠ ≠

   
= + + +   −     

    
− + + +    +     

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

 l,
l

l

N N N NN N
N

N N NN NN N
N N

 (58)

It is worth presenting here, in addition to the generic expressions 
(57), (58), specific conserved quantities associated to the vector NLS 
model. In ref. [24], results on the boundary vector NLS model, but using 
its discrete counterpart and then taking a suitable  continuum  limit. 
Let   us   now   focus on  the  vector NLS   model; the  corresponding 
U-operator

( ) 0 1= + � �l l                     (59) 

where i are  ×  matrices

1

1
1

1
2 ji

j
e e

i

−

=

 
= − 

 
∑�
N

NN

( )
1

0
1

j i j i
j

k e eψ ψ
−

=

= +∑�
N

NiN                     (60)

Then from the Riccati equations one obtains (see also [24])
( )1 ,jW i k jψ= −N  ( )2 ,jW k jψ=N                  (61)

and

( ) ( ) ( ) ( ), 1, , ; , , ;
B

jA j
Z B A t iL k dx x t W x tδ −= + ∫N N

nn
nl lö                  (62)

Given the expression for the local charges ln(T) (57) we expand 
in powers if 1/λ and the first non trivial conserved quantity is the 
modified momentum

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1 1 102 ' '

1 1 1
0 0 0 0 .j j j j j j j jL

j j j
k dx x x x x k kϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− − −

−
= = =

= − + +∑ ∑ ∑∫
N N N

I   (63)

This result confirms earlier findings on the vector NLS model, which 
were obtained from the study of the discrete version of the NLS model 
[24]. Application of this setting in other physical systems associate to 
higher rank algebra such as affine Toda field theories or higher rank σ 
models would certainly provide significant physical results, but these 
issues will be addressed in forthcoming investigations.

Conclusion
We have formulated a classical variation of the quantum vertex 

algebra, and we have shown that the auxiliary linear function is 
basically a classical vertex operator. Based on these notions we 
considered the problem of identifying the local integrals of motion and 
time components of the corresponding Lax pairs. Particular emphasis 
was given in systems in presence of defects and non-trivial integrable 
boundary conditions. It turns out that in these cases and in particular in 
the boundary case this formulation is technically considerably simpler 
and provides results directly at the continuum level even in situations 
that this has not been possible in a straightforward manner such as e.g. 
in the study of the vector NLS with twisted Yangian symmetry.

One of course has to note that the choice of the vectors V, V* 
implemented at the ends of the system modifies or even perhaps 
restricts the behaviour of the system under study. It is worth pointing 
out however that complications arising due to the asymptotic 
behaviour of the monodromy matrix in systems associated to high rank 
algebras on the half line can be efficiently dealt with in this framework, 
basically due to the restrictions imposed from the vectors V, V*. In fact, 
it would be illuminating and would provide further physical insight to 
implement this frame in prototype classical systems such as affine Toda 
field theories with integrable boundary conditions, however this issue 
will be addressed in a separate publication.

At the quantum level and in the context of quantum inverse 
scattering method in particular one builds the one dimensional 
lattice system using the “bare” R-matrix. Then the solution of the 
Bethe ansatz equations (BAE) in the thermodynamic limit serves as a 
renormalization process, so one may for instance derive the physical 
scat- tering information solving the BAE in the thermodynamic 
limit. Formulation of a bare version of vertex operators and the 
corresponding vertex algebra using the bare R-matrix could be the first 
step towards reconciling the Bethe anaszt formalism with the vertex 
operator construction by the Japanese group [25]. The light cone lattice 
approach by Destri and de Vega [26] could serve as a possible bridge 
between these two methodologies. This is a very interesting direction to 
pursue and will be left for future investigations [27-29].
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