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Abstract
Power analysis for sample size calculation (power calculation) plays an important role in clinical research to guarantee that we have sufficient 
power for detecting a clinically meaningful difference (treatment effect) at a pre-specified level of significance. In practice, however, there may 
be little or no information regarding the test treatment under study available. In this case, it is suggested that power calculation for detecting 
an anticipated effect size adjusted for standard deviation be performed, reducing a two-parameter problem into a single parameter problem 
by taking both mean response and variability into consideration. This study systematically analyzes estimating sample sizes across diverse 
endpoints, including relative/absolute change, risk metrics, exponential and proportional hazards models. Findings underscore the distinct nature 
of these metrics, reinforcing the necessity of an effect size measure as a standardized framework. Notably, analysis suggests it is possible to 
translate continuous and binary outcomes through a common effect size metric, which could facilitate meta-analyses involving heterogeneous 
outcome types. However, extending such translations to time-to-event outcomes presents additional complexities warranting advanced modeling 
techniques and hazard-based metrics. Through critical examination of effect size-based power calculations, this study contributes insights into 
efficient sample size estimation. It highlights the importance of standardized effect sizes as a unifying measure and the potential for outcome 
translation across endpoints. 
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Introduction
Power calculation, also known as sample size estimation, is a crucial step in 
the design of clinical trials. It involves determining the number of participants 
required to detect a statistically significant effect of the treatment under 
investigation, given a specified level of significance and desired power [1]. 
The importance of proper sample size selection in clinical trials cannot be 
overstated. A study with an inadequate sample size may lack the statistical 
power to detect clinically meaningful treatment effects, leading to inconclusive 
or misleading results. Conversely, an excessively large sample size may result 
in undue exposure of participants to experimental treatments, increased costs, 
and potential ethical concerns [2]. In practice, power calculation can be a 
challenging task, especially when the investigational treatment is new and/or 
when there is limited information available regarding specific parameters of the 
test treatment under study. In such cases, the traditional approach of using the 
mean and standard deviation for power calculation may not be applicable or 
reliable.

Power calculation based on effect size offers a viable solution to this challenge. 
By focusing on the standardized effect size, a dimensionless measure of the 
magnitude of the treatment effect, the problem is reduced from estimating two 
parameters (mean and standard deviation) to estimating a single parameter 
(standardized effect size). This approach has several advantages:

a. It simplifies the calculation process, making it more efficient and requiring 
less information about the specific parameters of the study. 

b. It can be applied to various study endpoints, such as relative change, 
absolute change, responder analysis and survival analysis, providing flexibility 
in the analysis of clinical trial data [3].

c. It facilitates comparison and synthesis of results across different studies and 
outcome measures, as effect sizes provide a standardized metric [4].

In this study, we aim to provide a systematic review and analysis of how 
power calculation based on standardized effect size can aid in sample size 
estimation for different study endpoints and in various clinical trial settings. By 
exploring the practical applications and implications of this approach, we seek 
to contribute to the understanding and implementation of efficient and reliable 
power calculations in clinical research. In the below session will delve into the 
formulation of hypotheses and sample size determination using standardized 
effect size in clinical trials, laying the groundwork for our methodology. In 
below session numerical analysis provides insights into estimating treatment 
effects for various endpoints, including relative change, absolute change, 
absolute risk, relative risk, exponential model and Cox's proportional model. 
We engage in a thorough discussion, critically examining the findings from our 
numerical analysis and considering their implications for clinical trial design and 
analysis. This includes a discussion on the limitations and potential areas for 
future research. Finally, it presents our concluding remarks, summarizing the 
study's key findings and their implications for the field of clinical research. We 
reflect on how our study contributes to a better understanding of the use of 
standardized effect sizes in power calculations and sample size estimation, 
offering recommendations for researchers looking to implement these methods 
in their clinical trials.

Methodology

Formulation of hypotheses and sample size determination 
using standardized effect size in clinical trials
To ensure the simplicity and broad applicability of our methodological 
framework, several foundational assumptions have been established. Firstly, 
the model presupposes the absence of interaction or confounding variables, 
which may otherwise distort the estimated effects of the treatments under 
consideration. Secondly, the design of choice is a two-sided, one-sample 
parallel configuration. This design is particularly advantageous for regulatory 
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approval processes, such as those employed by the Food and Drug 
Administration (FDA), due to its robustness and the comprehensive nature of 
the comparative insights it provides [3]. Thirdly, we assume an equal allocation 
of subjects across treatment arms, which facilitates a balanced comparison 
and enhances the statistical power of the trial. Lastly, the assumption of equal 
variance across groups is adopted, ensuring that any observed differences in 
treatment effects can be attributed with greater confidence to the treatments 
themselves rather than to underlying variability in the populations studied. 
These assumptions are integral to the integrity of the statistical analysis and 
are reflective of standard practices within clinical trial methodology.

Continuous (Comparing means) and binary (Comparing 
proportions)
Test for equality: The trial aims to test if there is a difference as compared to 
an active control. The hypothesis often considered is 

H : 0O ε =

vs.

H : 0a ε ≠

Where T Rε µ µ= − is the true mean difference between a test drug (µT) 
and active control agent (µR). Without loss of generality, consider ε > 0 as an 
indication of improvement (worsening) of the test drug as compared to the 
active control agent. The general power calculation for the required sample 
size per group N is given by:

2
2

2
2
aZ Zβ σ

ε

 + 
      Equation (1.1) [3]

Where α is the significance level and β is the probability of making type II 
errors. For simplicity, we assume 
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1 2n n= . Based on Cohen’s 

d (Standardized mean difference), Equation (1.1) can be rewritten as:
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Test for non-inferiority/superiority: The trial aims to test the non-inferiority/
superiority as compared to an active control. The hypothesis often considered 
is:

H :O ε δ≤

 vs.

H :a ε δ>

The test of noninferiority and superiority can be unified with the above 
hypothesis, 

where ε= µT - µR and δ is the noninferiority or superiority margin. With a
0δ > , the rejection of the null hypothesis shows the superiority of the 

treatment group; With 0δ < , the rejection of the null hypothesis shows the 
no inferiority of the treatment group. The general power calculation for the 
required sample size per group N is given by:

( )
( )

2 2

2

2 aZ Zβ σ

ε δ

+

−
    Equation (1.2) [3]

Equation (1.2) can be rewritten as:
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Test for equivalence: The trial aims to test the equivalence as compared to 
an active control. The hypothesis often considered is

 H :o ε δ≤

  vs.

 H :a ε δ>

The general power calculation for the required sample size per group N is 
given by:
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Binary: The derivation of binary endpoints proceeds analogously to that of 
continuous endpoints. For binary outcomes, the effect size (ε) is defined as the 
difference in proportions, such that 0p pε = − , where p and p0 represent the 
probabilities of success in the treatment and a reference value, respectively.

Time to event (Cox’s proportional hazards model)

Test for equality: In practical applications, it is most common to evaluate two 
treatments by considering only the treatment indicator as the solitary covariate 
without making adjustments for additional covariates [3], to test for equality of 
two survival curves, the following hypotheses are usually considered:

 H : 0O b ≤

  vs.

 H : 0a b >
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. The general power calculation for the required 

sample size per group N is given by:
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Where d is the probability of observing an event and pi is the proportion of 
patients in the ith treatment group. We assume d = 0.8 and p1=p2=0.5 for 
simplicity, Equation (2.1) can be rewritten as:
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Test for Non-inferiority/superiority: To test for noninferiority and superiority 
of two survival curves, the following hypotheses are usually considered:

H :O b δ≤

vs.

H :a b δ>

The general power calculation for the required sample size per group N is 
given by:

( )
( )

2

2
1 2

2 aZ Z

b p p d
β

δ

+

−
Equation 2.2 [3]



J Biom Biosta , Volume 15:3, 2024

Page 3 of 6

Equation (2.2) can be rewritten as:
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Test for equivalence: To test for equivalence of two survival curves, the 
following hypotheses are usually considered:

H :o b δ≥

  vs.

H :a b δ<

The general power calculation for the required sample size per group N is 
given by:
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Table 1 provides a summary of the requisite formulas for computing sample 
size, predicated upon the establishment of a clinically meaningful difference 
and the quantification of the standardized effect size.

Numerical analysis
In the numerical analysis of our study, we explore the intricacies of estimating 
the treatment effect for different endpoints, specifically delving into the nuances 
of relative change, absolute change, absolute risk, relative risk, exponential 

Test for Equality
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Test for Equivalence
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(Treatment Effect)
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Table 1. Sample size calculation formula based on clinically meaningful difference and effect size.
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model and cox’s proportional model and their impact on the determination of 
sample size in clinical trials. Our findings underscore the distinct nature of these 
metrics and illustrate that they are not readily translatable into one another, 
further reinforcing the necessity of a standardized measure effect size.

Continuous endpoint: The simulation was grounded on following 
assumptions: a significance level (α) of 0.05 for a 95% confidence threshold, 
a Type II error rate (β) of 0.20 for an 80% power, a standard deviation of 
outcomes (σ) set at 15, and a mean outcome of 150 in the control group.

In Table 2, we present the outcomes of our simulation for the test for equality. 
This Table illustrates the effects of varying treatment magnitudes on both 
absolute and relative change effect sizes, as well as their corresponding 
sample sizes. This approach serves as an example, highlighting the unique 
characteristics of absolute and relative changes and how they do not 
necessarily translate directly into one another. Similar procedures can be 
applied to reproduce other tests, providing insights into the distinct impacts of 
treatments across different metrics.

Table 3 and 6 display effect sizes for estimating sample sizes within the range 
of 0.2 to 0.8, aligning with the FDA's recognized range of effectiveness [5]. 
Table 3 provides uniform sample size calculations for both continuous and 
binary endpoints applying the formula from Table 1.

Binary endpoint: We assume that a baseline event probability in the control 
group (p0) at 0.1, representing the probability of the event occurring without 
treatment intervention with a significance level (α) of 0.05 and a Type II error 
rate (β) of 0.20.

The Odds Ratio (OR) is a critical statistic for assessing relative risk in binary 
outcome studies. It is a non-negative value, typically ranging up to 4, where 
an OR of 1, corresponding to equal probabilities of an event in treatment and 

Treatment Effect Absolute Change Effect Size Absolut Change Sample Size Relative Change Effect Size Relative Change Sample Size
0.5 0.03 14128 0.05 6280
1.0 0.07 3532 0.10 1570
1.5 0.10 1570 0.15 698
2.0 0.13 883 0.20 393
2.5 0.17 566 0.25 252
3.0 0.20 393 0.30 175
3.5 0.23 289 0.35 129
4.0 0.27 221 0.40 99
4.5 0.31 175 0.45 78
5.0 0.34 142 0.50 63
5.5 0.37 117 0.55 52
6.0 0.41 99 0.60 44
6.5 0.44 84 0.65 38
7.0 0.47 73 0.70 33
7.5 0.50 63 0.75 28
8.0 0.53 56 0.80 25
8.5 0.57 49 0.85 22
9.0 0.60 44 0.90 20
9.5 0.63 40 0.95 18

10.0 0.67 36 1.00 16
10.5 0.70 33 1.05 15
11.0 0.73 30 1.10 13
11.5 0.77 27 1.15 12
12.0 0.81 25 1.20 11
12.5 0.83 23 1.25 11
13.0 0.87 21 1.30 10
13.5 0.91 20 1.35 9
14.0 0.93 19 1.40 9
14.5 0.97 17 1.45 8
15.0 1.00 16 1.50 15.0

Table 2. Comparative analysis of sample sizes: Absolute and relative change metrics and corresponding treatment effect (Test for equality).

control groups, indicates no effect. An OR between 1 and 4 suggests a higher 
likelihood of the event occurring in the treatment group compared to the control 
group [3] (Table 4).

The effect size based on the odds ratio is often expressed in a logarithmic 
form, primarily to symmetrize the distribution and facilitate the application of 
standard statistical methods. The formula to compute the effect size for the 
odds ratio is as follows:

( )
( )

0

0

1
Odds Ratio Effect Size = log

1
t

t

p p
p p

 −
  − 

Time-to-event endpoint: We assume a baseline hazard rate, λ1(t), of 0.5 for 
the control group, indicating the risk of event occurrence without treatment. For 
the treatment group, the hazard rate, λ2(t), is conceptualized as 0.5+"treatment 
effect". These assumptions underpin the comparative analysis between control 
and treatment groups.

In our comparison, we utilized the Exponential Model, which posits a consistent 
hazard rate over time. Let 1 2ε λ λ= − be the difference between the hazard 
rates of a control and a test drug, which is the effect size here [3] (Tables 5 
and 6).

Results and Discussion 
The numerical analysis highlights the intricate relationships between 
effect size metrics and their distinct characteristics across different study 
endpoints. While absolute change, relative change, absolute risk and relative 
risk represent alternative ways to quantify treatment effects, our findings 
underscore their incommensurable nature, even when applied to the same 
dataset. This divergence becomes more pronounced as the treatment effect 
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Effect Size Equality (N) Non-inferiority/Superiority (N) Equivalence (N)
0.20 197 310 429
0.25 126 198 275
0.30 88 138 191
0.35 65 101 140
0.40 50 78 108
0.45 39 62 85
0.50 32 50 69
0.55 26 41 57
0.60 22 35 48
0.65 19 30 41
0.70 17 26 35
0.75 14 22 31
0.80 13 20 27

Table 3. Sample size estimation for test of equality in clinical trials: Continuous and binary outcomes (Test for equality).

Treatment Effect Absolute Risk Effect Size Absolute Risk Sample Size Odds Ratio Effect Size Odds Ratio Sample Size
0.1 0.25 252 1.67 6
0.2 0.44 83 1.88 5
0.3 0.61 42 1.82 5
0.4 0.80 25 1.67 6
0.5 1.02 16 1.50 7
0.6 1.31 10 1.35 9
0.7 1.75 6 1.21 11
0.8 2.67 3 1.10 14

Table 4. Comparative analysis of sample sizes: Absolute and relative risk metrics and corresponding treatment effect (Test for equality).

Treatment Effect Exponential Effect Size Exponential Sample Size Cox Effect Size Cox Samples Size
0.5 0.5 126 0.69 82
1.0 1.0 32 1.10 33
1.5 1.5 14 1.39 21
2.0 2.0 8 1.61 16
2.5 2.5 6 1.79 13
3.0 3.0 4 1.95 11
3.5 3.5 3 2.08 10
4.0 4.0 2 2.20 9

Table 5. Comparative analysis of sample sizes: Exponential model and Cox’s proportional model and corresponding treatment effect (Test for equality).

Effect Size Equality(N) Non-inferiority/Superiority (N) Equivalence (N)
0.20 982 1546 2141
0.25 628 990 1371
0.30 437 687 952
0.35 321 505 700
0.40 246 387 536
0.45 194 306 423
0.50 157 248 343
0.55 130 205 284
0.60 110 172 238
0.65 93 147 203
0.70 81 127 175
0.75 70 110 153
0.80 62 97 134

Table 6. Sample size estimation for test of equality in clinical trials: Time-to-event outcomes (Test for equality).

increases, underscoring the limitations of relying solely on a single metric 
to assess efficacy comprehensively. Interestingly, our analysis suggests a 
potential avenue for translating continuous and binary outcomes through 
a common effect size metric. By standardizing the treatment effect using 
appropriate scaling factors (e.g., standard deviation for continuous outcomes, 
baseline event rate for binary outcomes), it may be possible to derive a unified 
effect size measure that facilitates comparisons across diverse endpoints. 

This approach could prove valuable in meta-analyses and evidence synthesis 
efforts, where combining results from studies with varying outcome types is 
often necessary.

However, the translation between continuous, binary, and time-to-event 
outcomes presents additional challenges. While the exponential model 
and Cox's proportional model both capture the treatment effect on event 
occurrence, their effect size interpretations and underlying assumptions 
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differ. Exploring methods to bridge these gaps, perhaps through the use of 
common hazard-based metrics or advanced modeling techniques, could be a 
fruitful area for future research. It is important to acknowledge the limitations 
of our analysis. The simulations were based on specific assumptions, such 
as equal variances across groups, absence of confounding variables, and 
equal allocation of subjects. Deviations from these assumptions in real-world 
scenarios may impact the accuracy of sample size calculations and effect 
size estimates. Additionally, our analysis focused on a subset of effect size 
metrics and study endpoints; other metrics or more complex study designs 
may warrant further investigation.

Conclusion 
This study underscores the pivotal role of effect sizes in power calculations 
and sample size estimation for clinical trials. By highlighting the distinct nature 
of various effect size metrics and the challenges associated with translating 
findings across different endpoint types, our analysis reinforces the value of 
a standardized effect size measure as a unifying framework. The potential for 
translating continuous and binary outcomes through a common effect size 
metric represents a promising avenue for future exploration. Developing ro-
bust methods for such translations could facilitate more comprehensive meta-
analyses and evidence synthesis efforts, ultimately enhancing our understand-
ing of treatment efficacy across diverse clinical contexts. While the translation 
between continuous, binary, and time-to-event outcomes presents additional 
complexities, continued research into advanced modeling techniques and 
common hazard-based metrics may yield valuable solutions. Addressing these 
challenges could further refine the accuracy of sample size determination and 
facilitate more meaningful comparisons across clinical trials employing differ-
ent endpoint types.

As clinical research continues to evolve, the insights gained from this study 
contribute to a deeper understanding of the complexities involved in power 
calculations and sample size estimation. By highlighting the importance of a 
standardized effect size measure and the potential for translating outcomes, 
this work informs more robust and efficient clinical trial design and analysis, 
ultimately advancing our ability to develop and evaluate safe and effective 
medical interventions.
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