GET THE APP

Synthesis of Novel Levamisole Derivatives for Their Anticancer and Antiviral Activity
..

Chemical Sciences Journal

ISSN: 2150-3494

Open Access

Research Article - (2024) Volume 15, Issue 3

Synthesis of Novel Levamisole Derivatives for Their Anticancer and Antiviral Activity

Sujith*, Chudamani B and Subhas S Karki
*Correspondence: Sujith, Department of Chemistry and Toxicology, AIIMS Delhi, New Delhi, India, Tel: 9480774708, Email:
Department of Chemistry and Toxicology, AIIMS Delhi, New Delhi, India

Received: 01-Jun-2024, Manuscript No. CSJ-24-69043; Editor assigned: 02-Jun-2024, Pre QC No. P-69043; Reviewed: 18-Jun-2024, QC No. Q-69043; Revised: 24-Jun-2024, Manuscript No. R-69043; Published: 30-Jun-2024 , DOI: 10.37421/2150-3494.2024.15.3.304
Citation: Sujith, Chudamani B and Subhas S Karki. "Synthesis of Novel Levamisole Derivatives for Their Anticancer and Antiviral Activity." Chem Sci J 15 (2024): 304.
Copyright: © 2024 Sujith, et al. This is an open-access article distributed under the terms of the creative commons attribution license which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

All the compounds (CH-69 to CH-84) were evaluated for their cytostatic activity against human HeLa cervix carcinoma cells, human CEM CD4þ T-lymphocytes as well as murine L1210 cells. All assays were performed in 96 well microtiter plates. To each well were added (5-7.5) × 104 tumor cells and a given amount of the test compound. The cells were allowed to proliferate for 48 h (murine leukemia L1210 cells) or 72 h (human lymphocytic CEM and human cervix carcinoma HeLa cells) at 37°C in a humidified CO2 controlled atmosphere. At the end of the incubation period, the cells were counted in a coulter counter. The IC50 (50% inhibitory concentration) was defined as the concentration of the compound that inhibited cell proliferation by 50%. The cytotoxicity and antiviral activity of a new series of 2-arylimidazo[2,1-b] [1,3,4]thiadiazol-6-yl)-2H-chromen-2-one against different MDCK cell cultures, HeLa cell cultures, vero cell cultures, CRFK cell cultures is reported. Among the tested compounds, inhibitory effects of compounds (CH-69 to CH-84) on the proliferation of murine leukemia cells (L1210) and human T-lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa).

Keywords

HeLa • MDCK • CRFK • Thymidine kinase-deficient (TK-) HSV-1 Kos strain • Herpes simplex virus

Introduction

Levamisole was introduced by Janssen pharmaceutica in 1966 as anthelmintic agent to treat worm infestations in both humans and animals [1]. Later it was withdrawn from the market because of the serious side effects like agranulocytosis [2]. After being pulled out, the molecule has been tested in combination with fluorouracil to treat colon cancer. Evidence from clinical trials supports its addition to fluorouracil therapy to benefit patients with colon cancer [3].

Chemically levamisole is imidazothiazole derivative. Like levamisole, the modified molecule ‘‘Imidazo [2,1-b][1,3,4]thiadiazole’’ also bears anticancer property (Figure 1).

CSJ-Synthesis

Figure 1. Synthesis of target molecule from levamisole.

There are two types of bicyclic imidazo [2,1-b]-1,3,4-thiadiazole ring systems are possible. Both the ring systems have nitrogen as a bridgehead atom at 4th position. It is pseudo aromatic in nature containing imidazole as electron rich centre and desired substitution can be done at 2nd, 5th and 6th position by starting with appropriate synthons (Figure 2).

CSJ-Imidazo

Figure 2. Imidazo [2,1-b]-1,3,4-thiadiazole and Imidazo [5,1- b]-1,3,4-thiadiazole.

Other researchers have shown imidazo[2,1-b][1,3,4]thiadiazole nucleus as an useful scaffold for the development of novel anticancer agent [4-8].

Based on above discussion, 2-naphthyl-6-aryl-imidazo[2,1-b] [1,3,4]-thiadiazole nucleus has been taken as the target molecule for the thesis entitled “synthesis of levamisole derivatives for anti-cancer activity”.

Methods and Materials

All chemicals procured for the proposed research work is of high purity. Purity of all chemicals to be confirmed by TLC and solvents to be used after distillation. Proposed research work is comprised of following steps:

1) General method of synthesis of 2-amino-5-substituted-1,3,4- thiadiazole

0.034 M of Phosphorous oxychloride was added drop-wise to mixture of 0.01 M of carboxylic acid [E] and thiosemicarbazide [F] with constant stirring. The reaction mixture was refluxed for one hour, cooled and added to 250 ml of ice-cold water and neutralized with 10% potassium hydroxide solution. The precipitate of 2-amino-5- substituted-1,3,4-thiadiazole [G] was filtered, washed with water and crystallized from DMF-ethanol mixture.

Image

2-amino-5-substituted-1,3,4-thiadiazole

2) General method of synthesis of 3-(2-substituted imidazo[2,1- b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one

Equimolar quantity of 3-(2-bromoacetyl)-2H-chromen-2-one [D] and 5-substituted-1,3,4-thiadiazole-2-amine [G] in ethanol was refluxed for 10 hours-12 hours. The reaction mixture was poured in ice-cold water and pH of the solution was adjusted to 7.0 with aqueous solution of Na2CO3 to get 3-(2-substituted imidazo [2,1- b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one. The compound so obtained was purified from chloroform-ethanol mixture.

Image

3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2Hchromen- 2-one

3) General method of synthesis of 5-bromo-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one

To a well stirred mixture of 0.0050 M of anhydrous sodium acetate and 0.0025 M of an appropriate 3-(2-substituted imidazo[2,1-b]-1,3,4- thiadiazol-6-yl)-2H-chromen-2-one, 0.0025 M of bromine was added drop wise at room temperature. The stirring was stirred for 1 hour and later poured into ice cold water. The separated solid was filtered and recrystallized from chloroform-ethanol mixture. Physical constant values are given in Table 1.

Image

5-bromo-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2Hchromen- 2-one:

Table 1. Physical parameters of different 5-bromo-3-(2-substituted imidazo [2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one.

Code R Nature     % Yield M.P (°C) M.F M.W Rf Value
CH-69 Image Yellow, amorphous 62 210-212 C22H17N3O5S 435.45 0.56
CH-70 2-Methyl thiophene Brown, crystalline 40 196-98 C18H11N3O2S2 365.43 0.54
CH-71 0 Brown, amorphous 68 222-224 C14H9N3O2S 283.3 0.52
CH-72 Phenyl White, amorphous 65 278-80 C19H11N3O2S 345.37 0.5
CH-73 Thiophene Brown, crystalline 70 290-292 C17H9N3O2S2 351.4 0.77

 

Image

5-bromo-3-(2-substituted imidazo [2,1-b]-1,3,4-thiadiazol-6-yl)-2Hchromen- 2-one

4) General method of synthesis of 5-thiocyanato-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one

0.0025 M of bromine in glacial acetic acid (10 ml) was added drop wise at 0°C to a solution of 0.0025 M of 3-(2-substituted imidazo[2,1- b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one and 0.004 M of potassium thiocyanate in 10 ml of glacial acetic acid,. The reaction mixture was further stirred for 1 hour at 15°C-18°C, after which it was poured into ice cold water. Solid separated was filtered and recrystallized from the mixture of chloroform/ethanol. Physical constant values are given in Table 2.

Image

5-thiocyanato-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6- yl)-2H-chromen-2-one

Table 2. Physical parameters of different 5-thiocyanato-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one.

Code R Nature     % Yield M.P (°C) M.F M.W Rf
CH-74 Image Yellow, amorphous 55 218-220 C22H16BrN3O5S 514.35 0.63
CH-75     -CH3 White, amorphous 50 199-200 C14H8BrN3O2S 362.2 0.55
CH-76 Thiophene Brown, amorphous 60 248-249 C17H8BrN3O2S2 430.29 0.48

Image

5-thiocyanato-3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-
yl)-2H-chromen-2-one

5) General method of synthesis of 5-formyl-3-(2-substituted imidazo[2,1-b]- 1,3,4-thiadiazol-6-yl)-2H-chromen-2-one

0.002 M of 3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6- yl)-2H-chromen-2-one was added to the freshly prepared Villsmeier- Haack Reagent (prepared by the adding 0.75 ml of POCl3 drop wise to 5 ml of DMF at 0°C-5°C for 30 min) at room temperature. Stirring was continued for 4 hours at 80°C-90°C. The resulting reaction mixture was poured into ice cold water and neutralized to pH 7 with cold aqueous solution of sodium carbonate (Figures 3 and 4). The solid so obtained was filtered and recrystallized from ethanol (Tables 3-6).

Image

5-formyl-3-(2-substituted imidazo[2,1-b]- 1,3,4-thiadiazol-6-yl)-2Hchromen- 2-one

Image

3-(2-substituted imidazo[2,1-b]-1,3,4-thiadiazol-6-yl)-2Hchromen- 2-ones

Table 3. Physical parameters of different 5-formyl-3-(2-substituted imidazo [2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one.

Code R Nature     % Yield M.P (°C) M.F M.W Rf
CH-77 Image Yellow, amorphous 70 242-244 C23H16N4O5S2 492.53 0.44
CH-78 Image White, amorphous 55 180-182 C24H18N4O5S2 506.55 0.56

5-formyl-3-(2-substituted imidazo [2,1-b]-1,3,4-thiadiazol-6-yl)-2H-chromen-2-one

Table 4. IR Spectral data of synthesized derivatives.

Code R Nature % Yield M.P (°C) M.F M.W Rf Value
CH-79 Image Light, yellow 35 192-194 C23H17N3O6S 463.46 0.54
CH-80 Image White, amorphous 40 178-180 C24H19N3O6S 477.49 0.66
CH-81 Phenyl Brown, amorphous 45 250-252 C20H11N3O3S 373.38 0.72
CH-82 Thiophene Brown, crystalline 40 278-280 C18H9N3O3S2 379.41 0.58

 

Table 5. 1H NMR spectral data of synthesized compounds.

Compound code Spectral peaks (cm-1) Molecular stretch
CH-69 3050.01, 2972.73-2734 C-H (aromatic)
1724.05, 1590.99 C-H (aliphatic)
1476.24 >C=O
  >C=N
  >C=C
CH-70 3034.44 C-H (aromatic)
2968.87-2911.99 -C-H (aliphatic)
1716.34 >C=O (Ketone)
1605.45 >C=N
1480.1 >C=C
CH-71 3042.16 -C-H (aromatic)
2899.45-2844.49 -C-H (aliphatic)
1722.12 >C=O (Ketone)
1609.31 >C=N
1462.74 >C=C
CH-72 3046.98 -C-H (aromatic)
2972.73 -C-H (aromatic)
1718.26 >C=O
1606.41 >C=N
1432.85 >C=C
CH-73 3058.55 -C-H (aromatic)
2966.95-2826.17 -C-H (aliphatic)
1713.44 >C=O (Ketone)
1606.41 >C=N
1471.42 >C=C
CH-74 2997.8 C-H (aromatic)
2942.84-2826.17 C-H (aliphatic)
1738.51 >C=O
1610.27 >C=N
1478.17 >C=C
CH-75 3045.05 -C-H (aromatic)
2924.52-2961.16 -C-H (aliphatic)
1729.83 >C=O (Ketone)
1604.48 >C=N
1471.42 >C=C
CH-76 3052.76 -C-H (aromatic)
2942.84-2765.42 -C-H (aliphatic)
1729.83 >C=O (Ketone)
1597.41 >C=N
1471.42 >C=C
CH-77 3028.66 C-H (aromatic)
2979.48-2833.48 C-H (aliphatic)
2167.6 -CN
1707.66 >C=O
1610.27 >C=N
1466.6 >C=C
CH-78 2942.84-2747.10 -C-H (aliphatic)
2158.92 -CN
1702.84 >C=O
1604.48 >C=N
1465.83 >C=C
CH-79 2942.84-2836.77 -C-H (aliphatic)
1721.16 >C=O (Ketone)
1677.77 >C=O (Aldehyide)
1589.06 >C=N
1474.31 >C=C
CH-80 3001.2 -C-H (aromatic)
2906.20-2747.10 -C-H (aliphatic)
1716.34 >C=O (Ketone)
1654.62  >C=O (Aldehyde)
1598.7 >C=N
1467.56 >C=C
CH-82 3061.44 -C-H (aromatic)
2972.73-2869.56 -C-H (aliphatic)
1712.48 >C=O (Ketone)
1664.27 >C=O (Aldehyde)
1610.27 >C=N
1475.28 >C=C

Table 6. Compound code and chemical shift value (δ) in ppm and proton nature.

Compound code Chemical shift value (δ) in ppm and proton nature
CH-69 8.68 (1H, s,  ar.), 8.60 (1H, s,  ar.), 7.88-7.85 (1H, m, ar.), 7.67-7.57 (1H, m, ar.), 7.45 (1H, d, J=8), 7.37 (1H, t J=16), 7.17 (2H, s, ar.), 3.89 (6H, s, 2-OCH3), 3.75 (3H,s,-OCH3).
CH-70 8.67 (1H, s, ar.), 8.58 (1H, s, ar.),7.88-7.86 (1H, m, ar.), 7.63-7.59 (1H, m, ar.), 7.52-7.50 (1H, d, ar.), 7.47 (1H, d, J=8), 7.38 (1H, t, j=16.), 7.16-7.15 (1H, m, ar.), 4.73 (2H, s, -CH2).
CH-71 8.64 (1H, s, ar.), 8.52 (1H, s, ar.), 7.87-7.85 (1H, m, ar.), 7.62-7.58 (1H, m, ar.), 7.46 (1H, d, j=8.), 7.38 (1H, t, j=16), 2.74 (3H, s, -CH3).
CH-72 8.72 (1H, s, ar.), 8.68 (1H, s, ar.), 7.99 (2H, d, j=8), 7.91 (1H, d, j=8), 7.65-7.59 (4H, m, ar.), 7.49 (1H, d, j=8), 7.40 (1, t, j=16).
CH-73 10.03 (1H, s, -CHO), 8.57 (1H, s, ar.), 8.01-7.97 (3H, m, ar.), 7.92-7.89 (1H, m, ar.), 7.73-7.69 (2H, m, j=16), 7.52 (1H, d, j=8), 7.43 (1H, t, j=16), 7.32-7.30 (1H, m, ar.)
CH-74 8.39 (1H, s, ar.), 7.87-7.85 (1H, m, ar.), 7.70-7.65 (1H, m, ar.), 7.49 (1H, d, J=8), 7.41 (1H, t, J=16), 7.21 (2H, s, ar.), 3.92 (6H, s, 2-OCH3), 3.77 (3H, s, -OCH3).
CH-75 8.33 (1H, s, ar.), 7.85-7.82 (1H, m, ar.), 7.68-7.64 (1H, m, ar.), 7.47 (1H, d, j=8), 7.40 (1H, t, j=16), 2.78 (3H, s, -CH3).
CH-76 8.70 (1H, s, -ar.), 8.63 (1H, s, ar.), 7.97-7.95 (1H, m, ar.), 7.90-7.88 (2H, m, ar.), 7.64-7.60 (1H, m, ar.), 7.48 (1H, d, j=8), 7.40 (1H, t, j=16), 7.30-7.28 (1H, m, ar.)
CH-77 8.55 (1H, s, ar.), 7.92-7.90 (1H, m, ar.), 7.73-7.69 (1H, m, ar.), 7.53 (1H, d, J=8), 7.44 (1H, t, J=16), 7.26 (2H, s, ar.), 3.93 (6H, s, 2-OCH3), 3.78 (3H, s, -OCH3).
CH-78 8.47 (1H, s, ar.), 7.89 (1H, d, j=8.), 7.69 (1H, t, j=16), 7.51 (1H, d, j=8.), 7.42 (1H, t, j=16.), 6.79 (2H, s, ar.), 4.49 (2H, s, -CH2), 3.77 (6H, s, 2-OCH3), 3.65 (3H, s, -OCH3).
CH-79 10.07 (1H, s, -CHO), 8.59 (1H, s, ar.), 7.92 (1H, d, j=8), 7.71 (1H, t, J=16), 7.52 (1H, d, J=8), 7.43 (1H, t, j=16), 7.25 (2H, s, ar.), 3.93 (6H, s, -OCH3), 3.77 (6H, s, -OCH3).
CH-80 10.05 (1H, s, -CHO), 8.52 (1H, s, ar.), 7.90 (1H, d, j=8), 7.70 (1H, t, j=16), 7.50 (1H, d, j=8), 7.42 (1H, t, j=16), 6.78 (2H, s, ar.), 4.47 (2H, s, -CH2), 3.77 (6H, s, 2-OCH3), 3.65 (3H, s, -OCH3).
CH-82 8.37 (1H, s, -ar.), 8.00-7.99 (1H, m, ar.), 7.94-7.93 (1H, m, ar.), 7.87-7.84 (1H, m, ar.), 7.69-7.65 (1H, m, ar.), 7.48 (1H, d, j=8), 7.43-7.38 (1H, m, ar.), 7.31-7.29 (1H, m, ar.)
CSJ-IR

Figure 3. IR spectra of 3-(2-(3,4,5-trimethoxyphenyl)imidazo [2,1- b] [1,3,4] thiadiazol 6-yl)-2H-chromen-2-one.[CH69].

CSJ-spectra

Figure 4. 1HNMR spectra of 3-(2-(3,4,5-trimethoxyphenyl) imidazo [2,1-b] [1,3,4] thiadiazol 6-yl)-2H-chromen-2-one. [CH69].

Results and Discussion

2-aralkyl-6-aryl-imidazo-[2,1-b][1,3,4]-thiadiazoles

Series of 2,6-disubstituted-imidazothiadiazoles were prepared. The FTIR spectra find peaks in the range of 3125-3008 and 2969 cm-1-2764 cm-1 for aromatic and aliphatic -CH respectively. The imine (-C=N) and -C=C (Ar.) stretching observed between 1621 cm-1-1563 cm-1 and 1545 cm-1-1463 cm-1 respectively. Presence of -C=O stretching at 1702 cm-1 and 1716 cm-1 respectively. The 1H-NMR spectra showed peaks between 8.92-8.49, 8.25-6.93, and 4.95 -4.35 δδ ppm for imidazole -CH, aromatic -CH, and -CH2 protons respectively. The 2H-chromen-2-one proton of CH-8 and CH-15 appeared at 8.65 δ and 8.55 δ ppm respectively. The -OCH3 protons appeared between 3.75 δ -3.74 δ ppm for CH-2, 8 and CH-13. The - CH3 protons appeared at 2.29 δ ppm in CH-14. 13C-NMR spectra of CH-2 and CH-8 had shown peaks between 165-110 and 37 δ -36 δ ppm for aromatic and -CH2 carbons respectively. The methyl carbons (-OCH3) of CH-2 and 8 appeared at 55 δ ppm. The mass spectra of CH-2 and CH-8 had shown molecular ion peaks in positive mode at m/z 340.02 and 390.08 respectively. The FTIR, 1HNMR, 13C-NMR and HRMS data were summarized.

Anticancer activity in human and murine tumor cell lines

All the compounds (CH-69 to CH-84) were evaluated for their cytostatic activity against human HeLa cervix carcinoma cells, human CEM CD4þ T-lymphocytes as well as murine L1210 cells. All assays were performed in 96-well microtiter plates. To each well were added (5-7.5) × 104 tumor cells and a given amount of the test compound.

The cells were allowed to proliferate for 48 h (murine leukemia L1210 cells) or 72 h (human lymphocytic CEM and human cervix carcinoma HeLa cells) at 37°C in a humidified CO2 controlled atmosphere. At the end of the incubation period, the cells were counted in a coulter counter. The IC50 (50% inhibitory concentration) was defined as the concentration of the compound that inhibited cell proliferation by 50%.

Antiviral activity assays

The compounds were evaluated against the following viruses: herpes simplex virus type 1 (HSV-1) strain Kos, Thymidine Kinase- Deficient (TK-) HSV-1 Kos strain resistant to ACV (ACVr), Herpes Simplex Virus Type 2 (HSV-2) strains Lyons and G, Varicella Zoster Virus (VZV) strain Oka, TKVZV strain 07-1, Human Cytomegalovirus (HCMV) strains AD-169 and Davis, a clinical isolate of Adenovirus type 2 (Ad2), Human Herpes Virus 6 subtype A (HHV-6A) strain GS, vaccinia virus Lederle strain, Respiratory Syncitial Virus (RSV) strain Long, Vesicular Stomatitis Virus (VSV), Coxsackie B4, parainfluenza 3, reovirus-1, Sindbis, Punta Toro, Yellow Fever Virus (YFV), human immunodeficiency virus type 1 strain IIIB, human immunodeficiency virus type 2 strain ROD, and Hepatitis C Virus (HCV). The antiviral, other than anti-HIV and anti-HCV, assays were based on inhibition of virus-induced cytopathicity or plaque formation in Human Embryonic Lung (HEL) fibroblasts, African green monkey cells (Vero), Human Epithelial cells (HeLa), or Human T-lymphoblasts (HSB-2), according to previously established procedures. Confluent cell cultures in microtiter 96-well plates were inoculated with 100 CCID50 of virus (1 CCID50 being the virus dose to infect 50% of the cell cultures) or with 20 Plaque-Forming Units (PFUs). After a 1 h-2 h adsorption period, residual virus was removed, and the cell cultures were incubated in the presence of varying concentrations of the test compounds. Viral cytopathicity or plaque formation (VZV) was recorded as soon as it reached completion in the control virus-infected cell cultures that were not treated with the test compounds. Antiviral activity was expressed as the EC50, or the concentration required to reduce virus induced cytopathogenicity or viral plaque formation by 50%.

Cytotoxicity assays

Cytotoxicity measurements were based on the inhibition of cell growth. HEL cells were seeded at a rate of 5 cells-103 cells/well into 96-well microtiter plates and allowed to proliferate for 24 h. Then, medium containing different concentrations of the test compounds was added. After 3 days of incubationat 37°C, the cell number was determined with a coulter counter. The cytostatic concentration was calculated as the CC50, or the compound concentration required to reduce cell proliferation by 50% relative to the number of cells in the untreated controls. CC50 values were estimated from graphic plots of the number of cells (percentage of control) as a function of the concentration of the test compounds. Alternatively, cytotoxicity for cell morphology was expressed as the Minimum Cytotoxic Concentration (MCC), or the compound concentration that caused a microscopically detectable alteration of cell morphology.

Inhibitory effects of compounds (CH-69 to CH-84) on the proliferation of murine leukemia cells (L1210) and human Tlymphocyte cells (CEM) and human cervix carcinoma cells (HeLa) (Tables 7 and 8).

Table 7. Inhibitory effects of compounds.

Compound IC50* (µM)
L1210 CEM HeLa
CH-69 >250 >250 >250
CH-70 211 ± 14 138 ± 35 >250
CH-71 ≥ 250 196 ± 4 >250
CH-72 >250 >250 >250
CH-73 >250 >250 >250
CH-74 >250 >250 >250
CH-75 >250 >250 >250
CH-76 >250 >250 >250
CH-77 ≥ 250 165 ± 6 >250
CH-78 NT NT NT
CH-79 >250 >250 >250
CH-80                                                           NT NT NT
CH-81 NT NT NT
CH-82 >250 >250 >250
CH-83 23 ± 1 3.5 ± 0.8 9.5 ± 0.4
CH-84 1.6 ± 0.4 0.77 ± 0.06 0.38 ± 0.03

Table 8. Cytotoxicity and antiviral activity in: MDCK cell cultures (µM).

Cytotoxicity Antiviral EC50C
Compound CC50a Minimum cytotoxic concentrationb Influenza A/H1N1 A/Ned/378/05 Influenza A/H3N2 A/HK/7/87 Influenza B B/Ned/537/05
Visual CPE score MTS Visual CPE score MTS Visual CPE score MTS
CH-69 52.8 100 >100 >100 >100 >100 >100 >100
CH-70 >100 ≥ 100 >100 >100 >100 >100 >100 >100
CH-71 >100 >100 >100 >100 >100 >100 >100 >100
CH-72 >100 ≥ 100 >100 >100 >100 >100 >100 >100
CH-73 >100 ≥ 100 >100 >100 >100 >100 >100 >100
CH-74 >100 ≥ 20 >100 >100 >100 >100 >100 >100
CH-75 51.4 ≥ 20 >100 >100 >100 >100 >100 >100
CH-76 >100 >100 >100 >100 >100 >100 >100 >100
CH-77 >100 20 >100 >100 >100 >100 >100 >100
CH-78 NT NT NT NT NT NT NT NT
CH-79 >100 >100 50 32.8 100 >100 20 11.7
CH-80 NT NT NT NT NT NT NT NT
CH-81 NT NT NT NT NT NT NT NT
CH-82 >100 ≥ 100 >100 >100 >100 >100 >100 >100
CH-83 >100 ≥ 20 >100 >100 >100 >100 >100 >100
CH-84 2 ≥ 0.8 >100 >100 >100 >100 >100 >100
Zanamivir >100 >100 0.3 0.05 4 11.6 0.09 0.07
Ribavirin >100 >100 20 4 20 9.1 6.8 3.1
Amantadine >200 >200 20 9.2 4 2.8 >200 >200
Rimantadine >200 >200 40 15.9 0.8 0.1 >200 >200

Table 9. Cytotoxicity and antiviral activity in: HEL cell cultures (Concentration µM).

EC50b
Compound Minimum cytotoxic concentrationa Herpes simplex virus-1 (KOS) Herpes simplex virus-2  (G) Herpes simplex virus-1   TK-KOS ACVr Vaccinia virus Adeno virus-2 Human Coronavirus (229E)
CH-69 >100 >100 >100 >100 >100 >100 >100
CH-70 >100 >100 >100 >100 >100 >100 >100
CH-71 100 >100 >100 >100 >100 >100 >100
CH-72 >100 >100 >100 >100 >100 >100 >100
CH-73 >100 >100 >100 >100 >100 >100 >100
CH-74 >100 >100 >100 >100 >100 >100 >100
CH-75 >100 >100 >100 >100 >100 >100 >100
CH-76 >100 >100 >100 >100 >100 >100 >100
CH-77 >100 >100 >100 >100 >100 >100 >100
CH-78 NT NT NT NT NT NT NT
CH-79 20 >100 >100 >100 >100 >100 >100
CH-80 NT NT NT NT NT NT NT
CH-81 NT NT NT NT NT NT NT
CH-82 100 >100 >100 >100 >100 >100 >100
CH-83 100 >100 >100 >100 >100 >100 >100
CH-84 20 >100 >100 >100 >100 >100 >100
Brivudin >250 0.08 112 >250 10 -  -
Cidofovir >250 5 2 2 14 10  -
Acyclovir >250 0.08 0.8 >250 >250 -  -
Ganciclovir >100 0.3 0.094 20 >100 -  -
Zalcitabine >250 - - - - 5.8 -
Alovudine >250 - - - - 10 -
UDA >100  -  -  -  -  - 1.8
Ribavirin >250  -  -  -  -  - 85

Table 10. Cytotoxicity and antiviral activity in: HeLa cell cultures.

EC50b
Compound Concentration unit Minimum cytotoxic concentrationa Vesicular stomatitis  virus Coxsackie virus B4 Respiratory syncytial virus
69 µM >100 >100 >100 >100
70 µM >100 >100 >100 >100
71 µM >100 >100 >100 >100
72 µM >100 >100 >100 >100
73 µM >100 >100 >100 >100
74 µM 100 >100 >100 >100
75 µM >100 >100 >100 >100
76 µM >100 >100 >100 >100
77 µM 100 >100 >100 >100
78 -- NT NT NT NT
79 µM ≥100 >100 >100 >100
80 -- NT NT NT NT
81 -- NT NT NT NT
82 µM >100 >100 >100 >100
83 µM 100 >100 >100 >100
84 µM 4 >100 >100 >100
DS-10.000 µg/ml >100 1.4 >100 0.5
Ribavirin µM >250 5 146 3.4

Table 11. Cytotoxicity and antiviral activity in: Vero cell cultures.

EC50b
Compound Concentration unit Minimum cytotoxic concentrationa Para-influenza-3  virus Reovirus-1 Sindbis virus Coxsackie virus B4 Punta virus Toro Yellow Fever virus
CH-69 µM ≥ 20 >100 >100 >100 >100 >100 >100
CH-70 µM >100 >100 >100 >100 >100 >100 >100
CH-71 µM 100 >100 >100 >100 >100 >100 >100
CH-72 µM >100 >100 >100 >100 >100 >100 >100
CH-73 µM >100 >100 >100 >100 >100 >100 >100
CH-74 µM ≥20 >100 >100 >100 >100 >100 >100
CH-75 µM 100 >100 >100 >100 >100 >100 >100
CH-76 µM >100 >100 >100 >100 >100 >100 >100
CH-77 µM ≥20 >100 >100 >100 >100 >100 >100
CH-78 -- NT NT NT NT NT NT NT
CH-79 µM 100 >100 >100 >100 >100 >100 >100
CH-80 -- NT NT NT NT NT NT NT
CH-81 -- NT NT NT NT NT NT NT
CH-82 µM >100 >100 >100 >100 >100 >100 >100
CH-83 µM 100 >100 >100 >100 >100 >100 >100
CH-84 µM ≥ 0.8 >100 >100 >100 >100 >100 >100
DS-10.000 µg/ml >100 >100 >100 >100 58 50 0.4
Ribavirin µM ≥ 250 19 111 >250 >250 25 >250
Mycophenolic acid µM >100 0.4 0.6 >100 >250 2.3 0.8

Table 12. Cytotoxicity and antiviral activity in: CRFK cell cultures.

EC50b
Compound Concentration unit CC50a Feline Corona Virus (FIPV) Feline Herpes  Virus
CH-69 µM >100 >100 >100
CH-70 µM >100 >100 >100
CH-71 µM >100 >100 >100
CH-72 µM >100 >100 >100
CH-73 µM >100 >100 >100
CH-74 µM >100 >100 >100
CH-75 µM >100 >100 >100
CH-76 µM >100 >100 >100
CH-77 µM 13 >100 >100
CH-78 -- NT NT NT
CH-79 µM 39.6 >100 >100
CH-80 -- NT NT NT
CH-81 -- NT NT NT
CH-82 µM >100 >100 >100
CH-83 µM >100 >100 >100
CH-84 µM 4.9 >100 >100
HHA µg/ml >100 3.3 2.7
UDA µg/ml >100 14.4 9.1
Ganciclovir µM >100 >100 1.6

References

Google Scholar citation report
Citations: 912

Chemical Sciences Journal received 912 citations as per Google Scholar report

Chemical Sciences Journal peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward