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Introduction 
The theory of fractional calculus (FC) is a mathematical field, 

which unify and generalize classical calculus for non-integer order 
of derivation thus dealing with derivatives and integrals of arbitrary 
and complex orders. One can state that, the whole theory of fractional 
derivatives (FD) and integrals were established in the second half of 
the 19th century. The generalization of the concept of derivative and 
integral to a non-integer order has been subjected to several approaches 
and some various alternative definitions of fractional derivatives 
appeared in ref. [1]. Surveys of the history of the theory of fractional 
derivatives can be found in ref. [2].

For three centuries the theory of FC developed namely as a pure 
theoretical field of mathematics useful only for mathematicians. 
However, in the last few decades FC has been a fruitful field of research 
in science and engineering. In fact, many scientific areas are currently 
paying attention to the FC concepts and we can refer its adoption 
in viscoelasticity and damping, diffusion and wave propagation, 
electromagnetism, chaos and fractals, heat transfer, biology, 
electronics, signal processing, robotics, system identification, traffic 
systems, genetic algorithms, percolation, modeling and identification, 
telecommunications, chemistry, irreversibility, physics, control 
systems as well as economy, and finance [3,4]. It has been shown that 
new fractional-order models are more adequate than previously used 
integer order models.

Many authors pointed out that FC provided an excellent 
instrument for the description of properties of various real materials 
in particular the description of memory and hereditary properties 
of various materials and processes. This is the main advantage of FD 
in comparison with classical integer-order models, in which such 
effects are in fact neglected. The advantages of FC has been produced 
a successful revolution to modify many existing models of physical 
processes, e.g., the description of rheological properties of rocks, 
mechanical modeling of engineering materials such as polymers over 
extended ranges of time and frequency [5,6]. Fractional order models 
often work well, particularly in heat transfer and electrochemistry, 
for example, the half-order fractional integral is the natural integral 
operator connecting the applied gradients (thermal or material) with 
the diffusion of ions of heat [7].

The theory of application of the IEs is an important subject within 
applied mathematics. The IEs are used as mathematical models 

for many varied physical situations. In addition, The IEs occur as 
reformulations of other mathematical problems.

The area of the IEs is quite old, going back almost 300 years, but 
most of the theory of IEs dates from the twentieth century. An excellent 
presentation of the history of Fredholm IEs can be found in Bernkopf 
[8], who traces the historical development of both functional analysis 
and IEs and shows how they are related.

There are many well-written texts on the theory and application 
of solving IEs analytically. Among such, we note Muskhelishvili [9], 
who developed the theory of singular IE, Green [10], Hochstadt [11], 
Knawel [12,13] Kress [14], Michelin [15], Smirnov [16] and Tricomi 
[17].

The state of the art before 1960 for the numerical solution of IEs is 
well described in the book of Kantorovich and Krylov [18]. From 1960 
to the present day, many new numerical methods have been developed 
for the solution of many types of IEs, such as the Toeplitz matrix 
method, the product Nystrom method, the Galerkin method, Runge-
Kutta method and Block-by-block method (Abdou et al. [19], Baker 
and Miller [20], Dzhuraev [21] and Delves and Walsh [22]). There are 
many numbers of texts on the numerical solutions of the different types 
of IEs; we note especially Delves and Mohamed [23] Atkinson [24,25], 
and Golberg [26].

In other way, the theory of EVs and EFs is playing now an important 
role in solving the IE, especially when the IE in the homogeneous case, 
or when the kernel takes a singular form. The linear combination of 
the EVs and EFs is called the spectral relationship. Many different 
methods are used and derived to establish these spectral relationships. 
For this aim, the reader can obtain more information for the spectral 
relationships with different applications can be found in the work of 
Popov [27], Mkhitarian and Abdou [28,29], Abdou [30-36] Abdou and 
Ezz-Eldin [37], Abdou and Salama [38], Jiany [39], Jeanine and Barber 
[40] and Pang [41]. Consider L is a linear fractional integro-differential 
operator
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Provided that the R.H.S is point wise definition (0,)

Definition (3): The Caputo derivatives of order 
α>0 of a continuous function f:(0,∞)→ g(∞) is given by 
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Theorem 3: Let K be a compact operator on the Hilbert space H, 
and let {ψn} be a linearly independent sequence of EVs corresponding 
to some nonzero eigenvalue µ, that is Kψn=µψn for all n. Then, {ψn} 
contains a finite number of elements.

Method of Solution
Consider the general solution of (1) in the form:
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Hence, the general solution of (1) is given as: 
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The formula (5) represents a unique solution of the integro 
differential equation. To prove the boundedness and the orthogonally 
of the integro differential operator, we must know some properties of 
the fractional integro differential equations and the famous properties 
of the IE. Therefore, we consider eqn. (1) where p(x) is a real continuous 
function in (a,b), the kernel k (x − y) is continuous in the same interval. 
Moreover we have i.e., ( ) ( )k x y k x y− = −  and λ is real.
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Lemma 2: For the integro differential operator L of (1) 
and for every λ, the EFs of L, is bounded under the conditions 
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Proof: Taking the norm of both sides of (2)-(4) then using the two 

conditions of p(x) and k(x,y) with the famous relation 
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||A|| ≤ M

2

| ||
1

M
m

φ ≤
−

					                     (6)

The formula (6) proves the boundedness of the function Φ(x,λ;t) 
for all values of λ and x ∈[a,b],t ∈[0,T ],T <1.
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The function P(x) is a continuous function, while k (|x-y)| is a 
discontinuous function. U is a constant and is a parameter

The equations of the form Lφ=λφ arise in many mathematical 
physics problems. It is often true that, the special solutions called EFs or 
characteristic functions. These EFs must not identically zero and satisfy 
one or more conditions that are supplementary related to the problem 
being solved. The EFs exist only for special values of the parameter λ; 
these values of λ are called EVs or characteristic values.

Consider Φm is a solution of the equation LΦm=λmΦm, λm is an 
eigenvalue, which is not identically zero and which satisfies the 
supplementary conditions, then Φm is called an EF belonging to the 
EVλm. Here, in this paper, the asymptotic behavior of the EVs and EFs 
for the linear operator will be discussed. In addition, some results will be 
considered. In section 2 the basic concepts of the linear integral operator 
is considered. Moreover, the Riemann – Liouville, and the Caputo 
derivatives of order fractional integral are considered. In section 3, using 
the separation variable method and the linear differential method, we 
obtain the general solution of the nuclear integro differential equation. 
Some important results for EVs and EFs are considered.

Basic Concepts
Definition (1): The integral operator we were 
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Moreover, the integral operator is called compact.

Lemma 1: The kernel k (x− y ),a ≤  x, y ≤ b, can be decomposed 
in an infinite number of ways, into the sum of the suitable degenerate 
kernel  k0 (x , y) and another continuous kernel k1 (x , y) whose norm 
||k1|| can be made small as we wish i.e.
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Where ai(x), bi (y) and k1(x, y) are uniformly continuous and hence 

bounded in the interval [a,b].

Theorem1: Let H be L2(a,b) and K a degenerate integral operator
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K is a compact operator, if ai(x) and bi(x) belong to L2(a,b) for all i.

Theorem 2: Let (Kn) be a sequence of compact operators on a Hilbert 
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K is also compact i.e., 
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on L2[0,1].

Definition (2): The Riemann -- Liouville fractional 
integral of order α>0, of the function f( 0,∞ )→ g(∞) is given by
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Lemma 3: The EFs of the operator (1) corresponding to distinct 
EVs are orthogonal.

Proof: Assume that Φ1 (x; t) and  Φ2 (x; t) are two real EFs 
corresponding to the two different eigenvalues λ1 and λ2 respectively 
i.e., we have
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Integrating (1) with respect to t, we get
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Assuming that Φ1 (x; t) and 2 ( );x tΦ  satisfy eqn. (8). Then, 
multiplying the result by 2 ( , )x tΦ  and by Φ1 (x; t). Then subtracting 
the results and integrating with respect to x from a to b, then using 
the symmetric of the kernel (| |) (| |)k x y k x y− = −  Finally, we obtain
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After integrating and using the boundary conditions, the term in 
the left hand side will vanish. Hence, we get
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The formula 10) represents the condition of the orthogonally of the 
EFs in the space [L2 [a,b] XC (0,T ),T<1. Moreover, the function of time 
(t−τ ) ,0 <α<1 is called the weight function.

Lemma 4: The EVs of the integro-differential operator (1) are real

Proof: Write the integro-differential operator L in the form of two 
operators, one is differentiable and the second is integrable i.e.
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Since L0 is self adjoint operator with the condition  Φ(a;t)=Φ(b;t), 

see Abdou [45]. In addition, the kernel of the second integral operator 
is symmetric then K is self adjoint. In many mathematical physics 
investigation and computation of a function f (λ) the neighborhood of a 
finite point λ0 or in the neighborhood of the point at infinity is connected 
with considerable difficulties, the expression of the neighborhood of the 
point at infinity means for λ→∞ or λ→∞. These difficulties may often be 
overcome by means of an asymptotic formula that substitutes a simpler 
function for the given function f (λ). This simpler function is chosen in 
such a manner that it can be investigated and computed in an easier 
way than the original function f (λ). Moreover, it approximates to an 
arbitrary degree of accuracy when λ tends to λ0 or approaches infinity.

Now, let we have the interval =(c,d) and consider the functions f 
(λ), g(λ), h(λ), m(λ),... , defined on the interval (c,d). So we can define 
the following:
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The relation (14) can be adapted in the form
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The formula (15) is called an asymptotic representation of f (λ) 
in the neighborhood of the point λ0 on the interval (c,d). The reader 
must know that the asymptotically equivalent functions on unbounded 
interval  in the neighborhood of the point at infinity, i.e., for λ→∞, is 
defined similarly.

Theorem 4: Let g(x) be an integrable function in the interval [γ,β] 
and µ be a parameter, then 
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Theorem 5: For the boundary value problem of (1), the EVs and 
EFs are asymptotically equivalent on the interval [a, b] to the EVs and 
EFs of the boundary value problem
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Proof: Write the solution of (5), after using (2) and the condition 
Φ(a;t)=1 in eqn. (5) we have
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Using the notations
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then, using the second condition, Φ(b;t)=A(t) , in eqn. (5) we get

( ) ( ) ( ) ( )

0
( ) [1 ] ( ) ( ) )

( 1)

bn
i b a iB b i a iB

n a

UtA t i e e F d
n

α
λ λ ζ ζ ζ ζ

α

∞
− − − +

=

  = −  
Γ +   

∑ ∫ (19)

The second term in the right hand side (19) consists of the functional 
ei{λ(b−a)−B(b)} which is bounded in the interval (a,b), also the function eiB(ζ)

F(ζ),ζ∈(a,b) is an integrable function in (a,b). Then, by theorem (5), as 
λ→∞, the second term of (17) tends to zero. Thus for large value of λ, 
the formula (17) becomes
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Therefore, for large value of λ the roots of (20) becomes
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The corresponding EFs are
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The two formulas (22) and (23) represent, respectively the EVs and 
EFs of (1), and the general solution is given by:
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Conclusion
Figure 1 represents the 3D-plot for the EFsΦ with different values α 

and m. For fixed values of x=0.5, the increasing of fractional parameter 
α∈(0,1) implies to increase the profile of the EFs. Figure 2 represents 
the 3D-plot for the EFs Φ with different values α and x. For fixed values 
of m, the increasing of fractional parameter α∈(0,1) implies to increase 
the profile of the EFs, the peak of the vibration waves at large values of α 
be greater than others. Figures 3 and 4 represent the 3D-plot for the EFs 
Φ with different values α and x at (m=10000, m=0) respectively. For 
fixed values of, by comparing the result in Figure 2 with the result in 
Figure 3, the effect of fractional parameter α∈(0,1) has the same effect 
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Figure 1: 3D plot between (Φ, α, m) at x=0.5.
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Figure 2: 3D plot between (Φ, α, x) at m=0.0.
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Figure 3: 3D plot between (Φ, α, x) at m=10000.
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Figure 4: 3D plot between (Φ, α, x) at m=0.0.
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Figure 5: 3D plot between (Φ, m, x) at α=1.0.

on the EFs and the peak of the vibration wave. Figures 5-8 represent 
the 3D plot between (Φ, m, x) at different values α=1.0, 0.9,0.5,0.1 of on 
respectively. The effect of the fractional order parameter is very much 
prominent.

Future Work
In the future work the solution of nuclear integral equation in the 

homogeneous case, will be discussed and proved.
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Figure 6: 3D plot between (Φ, m, x) at α=0.9.
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Figure 7: 3D plot between (Φ, m, x) at α=0.5.
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Figure 8: 3D plot between (Φ, m, x) at α=0.1.
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