GET THE APP

DFT study on the partial oxidation mechanism of benzyl alcohol to benzaldehyde by O2 on TiO2 surface under visible-light irradiation
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

DFT study on the partial oxidation mechanism of benzyl alcohol to benzaldehyde by O2 on TiO2 surface under visible-light irradiation


2nd International Conference and Exhibition on Materials Science and Chemistry

July 13-14, 2017 Berlin, Germany

Hisayoshi Kobayashi and Shinya-Higashimoto

Kyoto Institute of Technology, Japan
Osaka Institute of Technology, Japan

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

The selective photocatalytic oxidation of benzyl alcohol by O2 on the TiO2 surface was theoretically studied by DFT calculations. Experimentally, it is well known that benzyl alcohol is oxidized to benzaldehyde, but cannot be further oxidized to benzoic acid, and TiO2 surface itself is insensitive for the visible light, but becomes sensitive by benzyl alcohol adsorption. These phenomena were clarified by the plane wave based DFT calculations. Dehydroxylated and partially hydroxylated TiO2 with an anatase TiO2 (101) crystal face were modeled with a slab of Ti16O32 and Ti16O32(OH)H, respectively. It was found that the interaction of benzyl alcohol with the hydroxylated TiO2 surface significantly induces the formation of the alkoxide species, of which the donative orbitals hybridized with the O2 p orbital in the valence band (VB) of the TiO2. The visible light response is attributed to the electronic transition from the donor levels created by the alkoxide species to the conduction band (CB). The dissociation of methylene C-H in the alkoxide was assisted by O2, and this process was confirmed to be the rate-determining step. Furthermore, the hydro-peroxide (OOH) species formed by O2 reduction can also oxidize another benzyl alcohol into benzaldehyde together with Ti-OH regeneration. It was thus clearly demonstrated that two benzaldehyde molecules were formed from two benzyl alcohols and one O2 molecule on the TiO2 photocatalysis.

Biography :

Hisayoshi Kobayashi is a Professor of Kyoto Institute of Technology. He got his Doctorate degree from Kyoto University in 1982 under Professor Kenichi Fukui. His field of research is theoretical analysis of catalysis of metal and metal oxide surfaces. He received the Award from the Catalysis Society of Japan in 1989, and the BCSJ Award Article from the Chemical Society of Japan in 2007. He has worked at the Nippon Sheet Glass Co., and at the Kinki University as a Professor.

Email: hisa@kit.ac.jp

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward