GET THE APP

Digital alloy growth of AlInAsSb for low noise avalanche photodetectors
..

Journal of Lasers, Optics & Photonics

ISSN: 2469-410X

Open Access

Digital alloy growth of AlInAsSb for low noise avalanche photodetectors


5th International Conference and Exhibition on Lasers, Optics & Photonics

November 28-30, 2016 Atlanta, USA

Seth Bank

University of Texas, USA

Scientific Tracks Abstracts: J Laser Opt Photonics

Abstract :

The application of AlxIn1-xAsySb1-y to near- and mid-infrared optoelectronic devices has been hampered by the challenge of realizing high quality films, due to the wide miscibility gap. However, it was recently shown that AlInAsSb can be grown within the miscibility gap over a moderate range of compositions by molecular beam epitaxy using the digital alloy technique. We have extended this approach to realize AlInAsSb digital alloys covering the entire direct bandgap range that is lattice-matched to GaSb (Al fractions ranging from 0% to ~80%). The broadly-tunable bandgap (0.24 eV at 0% Al to 1.23 eV at 76% Al), along with the type-I band alignments of this lattice-matched quaternary make it attractive for advanced mid-infrared and near-infrared detectors and sources. For avalanche photodetectors in particular, these materials exhibit low excess noise characteristics ΓΆΒ?Β? comparable to that of silicon and their band engineering flexibility proved indispensable for demonstrating the first low-noise separate absorption charge and multiplication (SACM) avalanche detector operating at telecom wavelengths and the first working staircase avalanche photodetectors. Here, we describe the growth and electrical/structural properties of these enabling materials.

Biography :

Seth Bank has received his BS from University of Illinois at Urbana–Champaign. He has done his MS and PhD degrees from Stanford University. After a Postdoctorate at UCSB, he joined the University of Texas at Austin, where he is currently an Associate Professor of ECE and holds a Temple Foundation Endowed Faculty Fellowship. His research focuses on the growth and application of novel heterostructures and nanocomposites to electronic/photonic devices. He has coauthored over 200 papers and presentations and has received PECASE, NSF CAREER, AFOSR YIP, ONR YIP, DARPA YFA, Young Scientist Award from ISCS, Young Investigator Award from NAMBE, and several best paper awards.

Email: sbank@ece.utexas.edu

Google Scholar citation report
Citations: 279

Journal of Lasers, Optics & Photonics received 279 citations as per Google Scholar report

Journal of Lasers, Optics & Photonics peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward