Nageh K Allam
The American University in Cairo, Egypt
Posters & Accepted Abstracts: J Material Sci Eng
If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. To this end, direct solar energy conversion to storable fuels offers a promising route toward less reliance on fossil fuels. The development of a successful solar-fuel-generation technology would require the invention of new photoactive materials that accomplish the combined tasks of light harvesting, charge separation, and compartmentalized chemical transformations. One of the most critical issues is the development of a suitable semiconductor photoanode with high efficiency and long-term durability in aqueous environments. In addition, the lack of effective oxidation and reduction catalysts is among the most serious obstacles preventing the development of an efficient and scalable artificial fuel generator. In this regard, nanoscience can make a difference. This talk will cover the assembly and development of new semiconductor nanoarchitectures as well as interface control for the purpose of solar energy conversion in general and direct solar-to-chemical energy conversion in particular.
Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report