Taha A Kumosani
King Abdulaziz University, Saudi Arabia
Scientific Tracks Abstracts: J Cancer Sci Ther
Both p16 and p15 proteins are inhibitors of cyclin-dependent kinases that prevent the cell going through the G1/S phase transaction. E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent interactions between adjacent epithelial cells. Two groups of patients were selected: the first group suffered from epithelial serous ovarian tumors and the second group suffered from benign ovarian lesions; ovarian tissue samples from all the subjects (benign and malignant) were subjected to methylation-specific polymerase chain reaction for methylated and unmethylated alleles of the genes (E-cadherin, p15, and p16). Results obtained showed that aberrant methylation of p15 and p16 genes were detected in 64.29 and 50% of ovarian cancer patients, while E-cadherin hypermethylation was detected in 78.57% of ovarian cancer patients. Methy- lation of E-cadherin was significantly correlated with different stage of disease (p < 0.05). It was found that the risk of E-cadherin hypermethylation was 1.347-fold, while risk of p15 hypermethylation was 1.543-fold and p16 was 1.2-fold among patients with ovarian cancer than that among patients with benign ovarian lesions. In con- clusion, Dysfunction of the cell cycle and/or the cell�cell adhesion molecule plays a role in the pathogenesis of ovarian cancer and that the analysis of the methylation of p15 and E-cadherin genes can provide clinically important evidence on which to base the treatment.
Taha A Kumosani has studied Biochemistry and Biochemistry of Cancer for 25+ years, during which time he has authored more than 150 research articles. He has served on the editorial boards for many Scientific Journals. including his current membership with many Scientific Society.
Email: t.kumosani@yahoo.com
Cancer Science & Therapy received 5282 citations as per Google Scholar report