GET THE APP

Materials by design for thermodynamically stable electrides
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Materials by design for thermodynamically stable electrides


9th World Congress on Materials Science and Engineering

June 12-14, 2017 Rome, Italy

Mina Yoon

University of Tennessee, USA

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

Two-dimensional (2D) electrides, emerging as a new type of layered material whose electrons are confined in interlayer spaces instead of atomic proximities, are receiving interest for their high performance in various optoelectronics and catalytic applications. A realization of electrides containing anionic electrons has been a great challenge because of their thermodynamic stability. For example, experimentally, only a couple of layered nitrides and carbides have been identified as 2D electrides. Here, we report new thermodynamically stable low-dimensional (1D and 2D) electrides by using first-principle global structure optimization method, phonon spectrum analysis, and molecular dynamics simulation. The method was applied to binary compounds consisting of alkaline-earth elements as cations and group VA, VIA, or VIIA nonmetal elements as anions, and further extended to less than ~100 K materials in databases. We demonstrated a new avenue to discover new electrides and provide new design principles, which will significantly boost the discovery of this new class of material with great technical application.

Biography :

Mina Yoon received her PhD degree in Theoretical Condensed Matter Physics in 2004, from Michigan State University. She is a Research Scientist at ORNL and a Joint Professor of Physics at University of Tennessee, Knoxville.

Email: myoon@ornl.gov

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward