GET THE APP

New Opportunities in Sustainable Nano Materials from Agro Waste
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

New Opportunities in Sustainable Nano Materials from Agro Waste


2nd World Congress on Smart Material and Material Science

July 21, 2021 | WEBINAR

Sabu Thomas

Mahatma Gandhi University, India

Keynote: Jour Mate Sci Eng

Abstract :

Green chemistry started for the search of benign methods for the development of nanoparticles from nature and their use in the field of antibacterial, antioxidant, and antitumor applications. Bio wastes are eco-friendly starting materials to produce typical nanoparticles with well-defined chemical composition, size, and morphology. Cellulose, starch, chitin and chitosan are the most abundant biopolymers around the world. All are under the polysaccharides family in which cellulose is one of the important structural components of the primary cell wall of green plants. Cellulosenanoparticles (fibers, crystals and whiskers) can be extracted from agro waste resources such as jute, coir, bamboo, pineapple leafs, coir etc. Chitin is the second most abundant biopolymer after cellulose, it is a characteristic component of the cell walls of fungi, the exoskeletons of arthropods and nanoparticles of chitin (fibers, whiskers) can be extracted from shrimp and crab shells. Chitosan is the derivative of chitin, prepared by the removal of acetyl group from chitin (Deacetylation). Starch nanoparticles can be extracted from tapioca and potato wastes. These nanoparticles can be converted into smart and functional biomaterials by functionalization through chemical modifications (esterification, etherification, TEMPO oxidation, carboxylation and hydroxylation etc.) due to presence of large amount of hydroxyl group on the surface. The preparation of these nanoparticles includes both series of chemical as well as mechanical treatments; crushing, grinding, alkali, bleaching and acid treatments. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to investigate the morphology of nanoscale biopolymers. Fourier transform infra-red spectroscopy (FTIR) and x ray diffraction (XRD) are being used to study the functional group changes, crystallographic texture of nanoscale biopolymers respectively. Since large quantities of bio wastes are produced annually, further utilization of cellulose, starch and chitins as functionalized materials is very much desired. The cellulose, starch and chitin nano particles are currently obtained as aqueous suspensions, which are used as reinforcing additives for high performance environment-friendly biodegradable polymer materials. These nanocomposites are being used as biomedical composites for drug/gene delivery, nano scaffolds in tissue engineering and cosmetic orthodontics. The reinforcing effect of these nanoparticles results from the formation of a percolating network based on hydrogen bonding forces. The incorporation of these nano particles in several bio-based polymers have been discussed. The role of nano particle dispersion, distribution, interfacial adhesion and orientation on the properties of the ecofriendly bio nanocomposites have been carefully evaluated. Keywords: Green chemistry, Transmission electron microscopy, Cellulosenanoparticles

Biography :

Professor Thomas is the Founder Director and Professor of the International and Interuniversity Centre for Nanoscience and Nanotechnology and full professor of Polymer Science and Engineering at the School of Chemical Sciences of Mahatma Gandhi University, Kottayam, and Kerala, India. He is an outstanding leader with sustained international acclaims for his work in Polymer Science and Engineering, Nano Materials, Polymer Nanocomposites, Elastomers, Polymer Blends, Interpenetrating Polymer Networks, Polymer Membranes, Green Composites and Nanocomposites, Nanomedicine and Green Nanotechnology. Dr. Thomas’s ground breaking inventions in polymer nanocomposites, polymer blends, green bionanotechnological and nano-biomedical sciences, have made transformative differences in the development of new materials for automotive, space, housing and biomedical fields.

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward