GET THE APP

Scalable functional nanocoatings
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Scalable functional nanocoatings


International Conference and Exhibition on Materials Chemistry

March 31-April 01, 2016 Valencia, Spain

Jas Pal Badyal

Durham University, UK

Keynote: J Material Sci Eng

Abstract :

The worldwide market for functional surfaces exceeds $50 billion per annum (US Department of Energy). A key driver is the added value that can be imparted to commercial products by the molecular engineering of their surface properties. For example, the cleanliness of optical lenses, the feel of fabrics, the resistance of biomedical devices to bacteria, the speed of computer hard disks, and even the wear of car brake pads are all governed by their surface properties. The fabrication of such surfaces requires the incorporation of specific functional groups; for which there exists no shortage of potential methods including: self-assembled monolayers (SAMs), Langmuir-Blodgett films, dip-coating, grafting, chemical vapour deposition, to name just a few. However such techniques suffer from drawbacks including substrate-specificity (cannot be easily adapted to different materials or geometries) and environmental concerns associated with the utilization of solvents, strong acid/base media, or heat. Plasma surface functionalization is a promising alternative which offers a wide range of benefits including low energy consumption, absence of solvents, minimal waste, rapid treatment times, scalability, and ambient processing temperatures. The molecular tailoring of solid surfaces will be described including super-repellency, non-fouling, thermoresponsive, rewritable, opto-chiral, antibacterial, capture and release, and nano-actuation. The application of this research has led to 37 patent families and the establishment of 3 successful start-up companies (Surface Innovations Ltd, Dow Corning Plasma Ltd, and P2i Ltd).

Biography :

Jas Pal Badyal was awarded BA/MA (1985) and PhD (1988) degrees from Cambridge University; where he subsequently held a King’s College Fellowship and the Oppenheimer Fellowship. He has been recipient of many honours relating to his work on Functional Surfaces, including the Harrison Prize from The Royal Society of Chemistry; the Burch Prize from The British Vacuum Council; and the IAAM Medal (International Association of Advanced Materials). His research has led to 3 successful start-up companies: Surface Innovations Ltd.; Dow Corning Plasma Ltd.; and P2i Ltd. (2015 International Business Award for ‘Most Innovative Company in Europe’).

Email: j.p.badyal@durham.ac.uk

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward