Huiping Zhao and Rong Chen
Wuhan Institute of Technology, China
Scientific Tracks Abstracts: J Chemical Sci
To overcome the issue of UV-light response character of Bi2O2CO3 due to its wide band gap, we attempted to improve the photocatalytic activity of Bi2O2CO3 through g-C3N4 surface-decoration, which was primarily evaluated by the theoretical analysis. Subsequently, g-C3N4 surface-decorated Bi2O2CO3 was successfully prepared via a facile hydrothermal method. It was found that all the g-C3N4 surface-decorated Bi2O2CO3 samples exhibited enhanced activities for antibiotic tetracycline photodegradation compared with pure Bi2O2CO3 upon simulated solar light irradiation, among which the 10 wt% g-C3N4 surface-decorated Bi2O2CO3 sample showed the highest efficiency. Both first principle calculation and experimental data confirmed that the charge transfered at the interface between g-C3N4 and Bi2O2CO3 could significantly suppress the recombination of photo-generated electron-holes pairs, thus improving the photocatalytic performance. The mechanism for the enhanced photocatalytic activity was also proposed by the electrochemical measurement and PL testification result. Moreover, the g-C3N4 surface-decorated Bi2O2CO3 was explored for antibiotics treatment in actual water.
Huiping Zhao has completed her PhD from Wuhan Institute of Technology in 2017. Her current research is concentrated on developing novel bismuth-related nanostructure materials for environmental remediation.
E-mail: hpzhao_yy@hotmail.com
Chemical Sciences Journal received 912 citations as per Google Scholar report