GET THE APP

Unravelling the physics of strongly correlated electron systems through nuclear magnetic resonance
..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Unravelling the physics of strongly correlated electron systems through nuclear magnetic resonance


International Conference and Exhibition on Mesoscopic & Condensed Matter Physics

June 22-24, 2015 Boston, USA

Nicholas Curro

University of California, USA

Scientific Tracks Abstracts: J Material Sci Eng

Abstract :

Correlated electron materials exhibit a rich spectrum of unusual ordered states at low temperature, including magnetism, superconductivity, and other exotic ground states. Often the ground state can be tuned by an external parameter such as pressure or field, and in some cases there exists a quantum phase transition that gives rise to a breakdown of conventional Fermi liquid theory in the disordered phase at high temperature. Nuclear Magnetic Resonance (NMR) is an ideal probe these materials because the nuclei offer a window into the microscopic electronic degrees of freedom via the hyperfine coupling. Furthermore, NMR can be performed under a broad range of extreme pressures, fields and temperatures, and is a microscopic in situ probe that does not perturb the electrons. Several examples of the power of this technique to study the phenomena of superconductivity, heavy fermion behavior, and inhomogeneous magnetism will be discussed.

Biography :

Nicholas Curro received his PhD in 1998 from the University of Illinois at Urbana-Champaign, and did his Postdoctoral studies at Los Alamos National Laboratory. He then transitioned to a permanent staff member at Los Alamos for several years before joining the faculty at UC Davis in 2008. He has published over 100 papers on NMR studies of the physics of correlated electron systems.

Email: curro@physics.ucdavis.edu

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward